MENU
Question -

Find the equation of a line for which
(i) p = 5, α = 60°
(ii) p = 4, α = 150°



Answer -

(i) p = 5, α = 60°

Given:

p = 5, α = 60°

The equation of theline in normal form is given by

Using the formula,

x cos α + y sin α= p

Now, substitute thevalues, we get

x cos 60° + y sin 60°= 5

x/2 + √3y/2 = 5

x + √3y = 10

The equation of linein normal form is x + √3y = 10.

(ii) p = 4, α = 150°

Given:

p = 4, α = 150°

The equation of theline in normal form is given by

Using the formula,

x cos α + y sin α= p

Now, substitute thevalues, we get

x cos 150° + y sin150° = 4

cos (180° – θ) =– cos θ , sin (180° – θ) = sin θ

x cos(180° – 30°)+ y sin(180° – 30°) = 4

– x cos 30° + ysin 30° = 4

–√3x/2 + y/2 = 4

-√3x + y = 8

The equation of linein normal form is -√3x + y= 8.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×