MENU
Question -

Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x тАУ 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.



Answer -

Given:

The lines x + y = 4and 2x тАУ 3y = 1

The equation of thestraight line passing through the point of intersection of x + y = 4 and2x┬атИТ┬а3y = 1 is

x + y┬атИТ┬а4+┬а╬╗(2x┬атИТ┬а3y┬атИТ┬а1) = 0

(1 + 2╬╗)x +(1┬атИТ┬а3╬╗)y┬атИТ┬а4┬атИТ┬а╬╗┬а= 0 тАж (1)

y = тАУ [(1 + 2╬╗) / (1 тАУ3╬╗)]x + [(4 + ╬╗) / (1 тАУ 3╬╗)]

The equation of theline with intercepts 5 and 6 on the axis is

x/5 + y/6 = 1 тАж. (2)

So, the slope of thisline is -6/5

The lines (1) and (2)are perpendicular.

тИ┤ -6/5 ├Ч [(-1+2╬╗) / (1тАУ 3╬╗)] = -1

╬╗ = 11/3

Now, substitute thevalues of┬а╬╗┬аin (1), we get the equation of the required line.

(1 + 2(11/3))x +(1┬атАУ┬а3(11/3))y┬атИТ┬а4┬атАУ┬а11/3┬а= 0

(1 + 22/3)x + (1 тАУ11)y тАУ 4 тАУ 11/3 = 0

25x тАУ 30y тАУ 23 = 0

тИ┤ The required equationis 25x тАУ 30y тАУ 23 = 0

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×