MENU
Question -

Prove that the area of the parallelogram formed by the lines
a1x + b1y + c1 = 0, a1x + b1y+ d1 = 0, a2x + b2y + c2 =0, a2x + b2y + d2 = 0 is 
 sq. units.

Deduce the condition for these lines to form a rhombus.



Answer -

Given:

The given lines are

a1x + b1y+ c1 = 0 … (1)

a1x + b1y+ d1 = 0 … (2)

a2x + b2y+ c2 = 0 … (3)

a2x + b2y+ d2 = 0 … (4)

Let us prove, the areaof the parallelogram formed by the lines a1x + b1y + c1 =0, a1x + b1y + d1 = 0, a2x + b2y+ c2 = 0, a2x + b2y + d2 =0 is
 sq. units.

The area of theparallelogram formed by the lines a1x + b1y + c1 =0, a1x + b1y + d1 = 0, a2x + b2y+ c2 = 0 and a2x + b2y + d2 =0 is given below:

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×