Question -
Answer -
Given:
m1x тАУ y + c1┬а=0 тАж (1)
m2x тАУ y + c2┬а=0 тАж (2)
m3x тАУ y + c3┬а=0 тАж (3)
It is given that thethree lines are concurrent.
Now, consider thefollowing determinant:
m1(-c3┬а+c2) + 1(m2c3-m3c2) + c1(-m2┬а+m3) = 0
m1(c2-c3)+ m2(c3-c1) + m3(c1-c2)= 0
тИ┤ The requiredcondition is m1(c2-c3) + m2(c3-c1)+ m3(c1-c2) = 0