MENU
Question -

Three numbers are in A.P., and their sum is 15. If 1, 3, 9 be added to them respectively, they from a G.P. find the numbers.



Answer -

Let the first term ofan A.P. be┬атАШaтАЩ┬аand its common difference beтАШdтАЩ.

a1┬а+ a2┬а+a3┬а= 15

Where, the threenumber are: a,┬аa + d, and a + 2d

So,

a + a + d + a + 2d =15

3a + 3d = 15 or a + d= 5

d = 5 тАУ a тАж (i)

Now, according to thequestion:

a + 1, a + d + 3, anda + 2d + 9

they are in GP, thatis:

(a+d+3)/(a+1) =(a+2d+9)/(a+d+3)

(a + d + 3)2┬а=┬а(a+ 2d + 9) (a + 1)

a2┬а+ d2┬а+9 + 2ad + 6d + 6a = a2┬а+ a + 2da + 2d + 9a + 9

(5 тАУ a)2┬атАУ4a + 4(5 тАУ a) = 0

25 + a2┬атАУ10a тАУ 4a + 20 тАУ 4a = 0

a2┬атАУ18a + 45 = 0

a2┬атАУ15a тАУ 3a + 45 = 0

a(a тАУ 15) тАУ 3(a тАУ 15)= 0

a = 3 or a = 15

d = 5 тАУ a

d = 5 тАУ 3 or d = 5 тАУ15

d = 2 or тАУ 10

Then,

For a = 3 and d = 2,the A.P is 3, 5, 7

For a = 15 and d =-10, the A.P is 15, 5, -5

тИ┤┬аThe numbers are3, 5, 7 or 15, 5, тАУ 5

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×