MENU
Question -

If a, b, c, d are in G.P., prove that:

(i) (ab тАУ cd) / (b2┬атАУ c2) = (a + c) / b

(ii) (a + b + c + d)2┬а= (a + b)2┬а+ 2(b +c)2┬а+ (c + d)2

(iii) (b + c) (b + d) = (c + a) (c + d)



Answer -

(i)┬а(ab тАУ cd) / (b2┬атАУc2) = (a + c) / b

Given that a, b, c arein GP.

By using the propertyof geometric mean,

b2┬а=ac

bc = ad

c2┬а=bd

Let us consider LHS:(ab тАУ cd) / (b2┬атАУ c2)

(ab тАУ cd) / (b2┬атАУc2) = (ab тАУ cd) / (ac тАУ bd)

= (ab тАУ cd)b / (ac тАУbd)b

= (ab2┬атАУbcd) / (ac тАУ bd)b

= [a(ac) тАУ c(c2)]/ (ac тАУ bd)b

= (a2c тАУ c3)/ (ac тАУ bd)b

= [c(a2┬атАУc2)] / (ac тАУ bd)b

= [(a+c) (ac тАУ c2)]/ (ac тАУ bd)b

= [(a+c) (ac тАУ bd)] /(ac тАУ bd)b

= (a+c) / b

= RHS

тИ┤┬аLHS = RHS

Hence proved.

(ii)┬а(a + b + c + d)2┬а=(a + b)2┬а+ 2(b + c)2┬а+ (c + d)2

Given that a, b, c arein GP.

By using the propertyof geometric mean,

b2┬а=ac

bc = ad

c2┬а=bd

Let us consider RHS:(a + b)2┬а+ 2(b + c)2┬а+ (c + d)2

Let us expand

(a + b)2┬а+2(b + c)2┬а+ (c + d)2┬а= (a + b)2┬а+2 (a+b) (c+d) + (c+d)2

= a2┬а+b2┬а+ 2ab + 2(c2┬а+ b2┬а+ 2cb) + c2┬а+d2┬а+ 2cd

= a2┬а+b2┬а+ c2┬а+ d2┬а+ 2ab + 2(c2┬а+b2┬а+ 2cb) + 2cd

= a2┬а+b2┬а+ c2┬а+ d2┬а+ 2(ab + bd + ac +cb +cd) [Since, c2┬а= bd, b2┬а= ac]

You can visualize theabove expression by making separate terms for (a + b + c)2┬а+ d2┬а+2d(a + b + c) = {(a + b + c) + d}2

тИ┤┬аRHS = LHS

Hence proved.

(iii)┬а(b + c) (b + d) = (c +a) (c + d)

Given that a, b, c arein GP.

By using the propertyof geometric mean,

b2┬а=ac

bc = ad

c2┬а=bd

Let us consider LHS:(b + c) (b + d)

Upon expansion we get,

(b + c) (b + d) = b2┬а+bd + cb + cd

= ac + c2┬а+ad + cd [by using property of geometric mean]

= c (a + c) + d (a +c)

= (a + c) (c + d)

= RHS

тИ┤┬аLHS = RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×