MENU
Question -

If a, b, c are in G.P., prove that the following are also in G.P.:
(i) a2, b2, c2

(ii) a3, b3, c3

(iii) a2 + b2, ab + bc, b2 + c2



Answer -

(i) a2, b2,c2

Given that a, b, c arein GP.

By using the propertyof geometric mean,

b2 =ac

on squaring both thesides we get,

(b2)2 =(ac)2

(b2)2 =a2c2

a2, b2,c2 are in G.P.

(ii) a3, b3,c3

Given that a, b, c arein GP.

By using the propertyof geometric mean,

b2 =ac

on squaring both thesides we get,

(b2)3 =(ac)3

(b2)3 =a3c3

(b3)2 =a3c3

a3, b3,c3 are in G.P.

(iii) a2 + b2,ab + bc, b2 + c2

Given that a, b, c arein GP.

By using the propertyof geometric mean,

b2 =ac

a2 + b2,ab + bc, b2 + c2 or (ab + bc)2 =(a2 + b2) (b2 + c2) [byusing the property of GM]

Let us consider LHS:(ab + bc)2

Upon expansion we get,

(ab + bc)2 =a2b2 + 2ab2c + b2c2

= a2b2 +2b2(b2) + b2c2 [Since, ac = b2]

= a2b2 +2b4 + b2c2

= a2b2 +b4 + a2c2 + b2c2 {againusing b2 = ac }

= b2(b2 +a2) + c2(a2 + b2)

= (a2 +b2)(b2 + c2)

= RHS

 LHS = RHS

Hence a2 +b2, ab + bc, b2 + c2 are in GP.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×