MENU
Question -

If Sp┬аdenotes the sum of the series 1 + rp┬а+r2p┬а+ тАж to тИЮ and sp┬аthe sum of the series 1 тАУ rp┬а+r2p┬атАУ тАж to тИЮ, prove that sp┬а+ Sp┬а=2 S2p.



Answer -

Given:

Sp┬а= 1+ rp┬а+ r2p┬а+ тАж тИЮ

By using the formula,

SтИЮ┬а=a/(1 тАУ r)

Where, a = 1, r = rp

So,

Sp┬а= 1/ (1 тАУ rp)

Similarly, sp┬а=1 тАУ rp┬а+ r2p┬атАУ тАж тИЮ

By using the formula,

SтИЮ┬а=a/(1 тАУ r)

Where, a = 1, r = -rp

So,

Sp┬а= 1/ (1 тАУ (-rp))

= 1 / (1 + rp)

Now, Sp┬а+sp┬а= [1 / (1 тАУ rp)] + [1 / (1 + rp)]

2S2p┬а=[(1 тАУ rp) + (1 + rp)] / (1 тАУ r2p)

= 2 /(1 тАУ r2p)

тИ┤ 2S2p┬а=Sp┬а+ Sp

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×