MENU
Question -

Find the sum of the following geometric progressions:

(i) 2, 6, 18, … to 7 terms

(ii) 1, 3, 9, 27, … to 8 terms

(iii) 1, -1/2, ¼, -1/8, …

(iv) (a2 – b2), (a – b), (a-b)/(a+b), … to nterms

(v) 4, 2, 1, ½ … to 10 terms



Answer -

(i) 2, 6, 18, … to 7 terms

We know that, sum ofGP for n terms = a(rn – 1)/(r – 1)

Given:

a = 2, r = t2/t1 =6/2 = 3, n = 7

Now let us substitutethe values in

a(rn –1)/(r – 1) = 2 (37 – 1)/(3-1)

= 2 (37 –1)/2

= 37 –1

= 2187 – 1

= 2186

(ii) 1, 3, 9, 27, … to 8terms

We know that, sum ofGP for n terms = a(rn – 1)/(r – 1)

Given:

a = 1, r = t2/t1 =3/1 = 3, n = 8

Now let us substitutethe values in

a(rn –1)/(r – 1) = 1 (38 – 1)/(3-1)

= (38 –1)/2

= (6561 – 1)/2

= 6560/2

= 3280

(iii) 1, -1/2, ¼, -1/8, …

We know that, sum ofGP for infinity = a/(1 – r)

Given:

a = 1, r = t2/t1 =(-1/2)/1 = -1/2

Now let us substitutethe values in

a/(1 – r) = 1/(1 –(-1/2))

= 1/(1 + 1/2)

= 1/((2+1)/2)

= 1/(3/2)

= 2/3

(iv) (a2 –b2), (a – b), (a-b)/(a+b), … to n terms

We know that, sum ofGP for n terms = a(rn – 1)/(r – 1)

Given:

a = (a2 –b2), r = t2/t1 = (a-b)/(a2 –b2) = (a-b)/(a-b) (a+b) = 1/(a+b), n = n

Now let us substitutethe values in

a(rn –1)/(r – 1) =

(v) 4, 2, 1, ½ … to 10terms

We know that, sum ofGP for n terms = a(rn – 1)/(r – 1)

Given:

a = 4, r = t2/t1 =2/4 = 1/2, n = 10

Now let us substitutethe values in

a(rn –1)/(r – 1) = 4 ((1/2)10 – 1)/((1/2)-1)

= 4 ((1/2)10 –1)/((1-2)/2)

= 4 ((1/2)10 –1)/(-1/2)

= 4 ((1/2)10 –1) × -2/1

= -8 [1/1024 -1]

= -8 [1 – 1024]/1024

= -8 [-1023]/1024

= 1023/128

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×