MENU
Question -

Evaluate the following:



Answer -

= (2 + 31)+ (2 + 32) + (2 + 33) + … + (2 + 311)

= 2×11 + 31 +32 + 33 + … + 311

= 22 + 3(311 –1)/(3 – 1) [by using the formula, a(1 – rn )/(1 – r)]

= 22 + 3(311 –1)/2

= [44 + 3(177147 –1)]/2

= [44 + 3(177146)]/2

= 265741

= (2 + 30)+ (22 + 3) + (23 + 32) + … + (2n +3n-1)

= (2 + 22 +23 + … + 2n) + (30 + 31 +32 + …. + 3n-1)

Firstly let usconsider,

(2 + 22 +23 + … + 2n)

Where, a = 2, r = 22/2= 4/2 = 2, n = n

By using the formula,

Sum of GP for n terms= a(rn – 1 )/(r – 1)

= 2 (2n –1)/(2 – 1)

= 2 (2n –1)

Now, let us consider

(30 +31 + 32 + …. + 3n)

Where, a = 30 =1, r = 3/1 = 3, n = n

By using the formula,

Sum of GP for n terms= a(rn – 1 )/(r – 1)

= 1 (3n –1)/ (3 – 1)

= (3n –1)/2

So,

= (2 + 22 +23 + … + 2n) + (30 + 31 +32 + …. + 3n)

= 2 (2n –1) + (3n – 1)/2

= ½ [2n+2 +3n – 4 – 1]

= ½ [2n+2 +3n – 5]

= 42 +43 + 44 + … + 410

Where, a = 42 =16, r = 43/42 = 4, n = 9

By using the formula,

Sum of GP for n terms= a(rn – 1 )/(r – 1)

= 16 (49 –1)/(4 – 1)

= 16 (49 –1)/3

= 16/3 [49 –1]

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×