MENU
Question -

A function f: R → R is defined as f(x)= x3 + 4. Is it a bijection or not? In case it is abijection, find f−1 (3).



Answer -

Given thatf: R → R is defined as f(x) = x3 +4

Injectivity of f:

Let x and y be two elements of domain (R),

Such thatf (x) = f (y)

 x3 + 4 = y3 + 4

 x3 = y3

 x = y

So, f isone-one.

Surjectivityof f:

Let y be in the co-domain (R),

Such that f(x) =y.

 x3 +4 = y 

x3 =y – 4

x = (y – 4) in R (domain)

f is onto.

So, f is a bijection and, hence, it is invertible.

Finding f-1:

Let f−1 (x) = y……(1)

 x = f (y)

 x = y+ 4

 x − 4 = y3

y = (x-4)

So, f-1(x) = (x-4)       [from (1)]

f-1 (3)= (3 – 4)

= -1

= -1

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×