MENU
Question -

Let┬аf,┬аg,┬аh┬аbe real functions given by┬аf(x) =sin┬аx,┬аg┬а(x) = 2x┬аand┬аh┬а(x) = cos┬аx. Provethat┬аfog┬а=┬аgo┬а(f h).



Answer -

Given that f(x) =sin┬аx,┬аg┬а(x) = 2x┬аand┬аh┬а(x) = cos┬аx

We┬аknow┬аthat┬аf:┬аRтЖТ[тИТ1,┬а1]┬аand┬аg:┬аRтЖТ R

Clearly,┬аthe┬аrange┬аof┬аg┬аis┬аa┬аsubset┬аof┬аthe┬аdomain┬аof┬аf.

fog:┬аR┬атЖТ┬аR

Now,┬а(fh)┬а(x) = f┬а(x)h┬а(x)┬а=┬а(sin┬аx)┬а(cos┬аx)┬а= ┬╜ sin┬а(2x)

Domain┬аof┬аfh┬аis┬аR.

Since┬аrange┬аof┬аsin┬аx┬аis┬а[-1,1], тИТ1┬атЙд┬аsin┬а2x┬атЙд┬а1

тЗТ -1/2 тЙд sin x/2 тЙд 1/2

Range┬аof┬аfh┬а= [-1/2, 1/2]

So,┬а(fh):┬аR┬атЖТ [(-1)/2, 1/2]

Clearly,┬аrange┬аof┬аfh┬аis┬аa┬аsubset┬аof┬аg.

тЗТ┬аgo┬а(fh):┬аR┬атЖТ┬аR

тЗТDomains┬аof┬аfog┬аand┬аgo┬а(fh)┬аare┬аthe┬аsame.

So,┬а(fog)┬а(x)= f┬а(g┬а(x))┬а

=┬аf┬а(2x)┬а

=┬аsin┬а(2x)

And┬а(go┬а(fh))┬а(x)┬а=┬аg┬а((f(x). h(x))┬а

=┬аg┬а(sinx┬аcos┬аx)┬а

=┬а2sin┬аx┬аcos┬аx┬а

=┬аsin┬а(2x)

тЗТ┬а(fog)┬а(x)┬а=┬а(go(f h))┬а(x),┬атИАx┬атИИ┬аR

Hence,┬аfog┬а=┬аgo┬а(fh)

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×