MENU
Question -

Which of the following functions from A to B areone-one and onto?
(i) f1 = {(1, 3), (2, 5), (3, 7)}; A = {1, 2,3}, B = {3, 5, 7}

(ii) f2 = {(2, a), (3, b),(4, c)}; A = {2, 3, 4}, B = {a, b, c}

(iii) f3 = {(a, x), (b, x), (c, z),(d, z)}; A = {a, b, c, d,}, B ={x, y, z}. 



Answer -

(i) Consider f1 ={(1, 3), (2, 5), (3, 7)}; A = {1, 2, 3}, B = {3, 5, 7}

Injectivity:

f1 (1) = 3

f(2) = 5

f1 (3) = 7

Every elementof A has different images in B.

So, f1 is one-one.

Surjectivity:

Co-domain of f1 = {3, 5, 7}

Range of f1 =set of images  =  {3, 5, 7}

Co-domain = range

So, f1 is onto.

(ii) Consider f2 ={(2, a), (3, b), (4, c)}; A = {2, 3, 4}, B ={a, b, c}

Injectivity:

f2 (2) = a

f2 (3) = b

f2 (4) = c

Every elementof A has different images in B.

So, f2 is one-one.

Surjectivity:

Co-domain of f2 = {a, b, c}

Range of f2 =set of images = {a, b, c}

Co-domain = range

So, f2 isonto.

(iii) Consider f3 ={(a, x), (b, x), (c, z), (d, z)} ; A ={a, b, c, d,}, B = {x, y, z}

Injectivity:

f3 (a) = x

f3 (b) = x

f3 (c) = z

f3 (d) = z

a and b have the same image x.

Also c and d havethe same image z

So, f3 is not one-one.

Surjectivity:

Co-domain of f3 ={x, y, z} 

Range of f3 =set of images = {x, z}

So, the co-domain  is not same as the range.

So, f3 is not onto.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×