MENU
Question -

Prove that the function f: N → N, defined by f(x) = x2 + x + 1, is one-one but not onto



Answer -

Givenf: N → N, defined by f(x) = x2 + x +1

Now we have to provethat given function is one-one

Injectivity:

Let x and y be any two elements in the domain (N), suchthat f(x) = f(y). 

x2 +x + 1 = y2 + y + 1

(x2 –y2) + (x – y) = 0 `

(x + y) (x- y ) + (x– y ) = 0

(x – y) (x + y + 1) =0 

x – y = 0 [x + y +1 cannot be zero because x and y are natural numbers 

x = y

So, f isone-one.

Surjectivity: 

When x = 1

x2 + x+ 1 = 1 + 1 + 1 = 3

x2 +x +1 ≥ 3, for every x in N.

 f(x) will notassume the values 1 and 2. 

So, f is not onto.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×