MENU
Question -

Prove that the function f: N тЖТ N, defined by f(x) = x2 + x + 1, is one-one but not onto



Answer -

Givenf:┬аN┬атЖТ┬аN, defined by┬аf(x) =┬аx2┬а+┬аx┬а+1

Now we have to provethat given function is one-one

Injectivity:

Let┬аx┬аand┬аy┬аbe any two elements in the domain (N), suchthat┬аf(x) = f(y).┬а

тЗТ x2┬а+x + 1 = y2┬а+ y + 1

тЗТ (x2┬атАУy2) + (x тАУ y) = 0 `

тЗТ (x + y) (x- y ) + (xтАУ y ) = 0

тЗТ (x тАУ y) (x + y + 1) =0┬а

тЗТ x тАУ y = 0 [x + y +1┬аcannot be zero because x and y are natural numbers┬а

тЗТ x = y

So,┬аf┬аisone-one.

Surjectivity:┬а

When x = 1

x2┬а+ x+ 1 = 1 + 1 + 1 = 3

тЗТ x2┬а+x +1 тЙе 3,┬аfor every x in N.

тЗТ┬аf(x) will notassume the values 1 and 2.┬а

So, f is not onto.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×