MENU
Question -

Let A = [-1, 1]. Then, discuss whether the followingfunction from A to itself is one-one, onto or bijective:

(i) f (x) = x/2

(ii) g (x) = |x|

(iii) h (x) = x2



Answer -

(i) Given f: A →A, given by f (x) = x/2

Now we have to show thatthe given function is one-one and on-to

Injection test:

Let x and y beany two elements in the domain (A), such that f(x) = f(y).

f(x) = f(y)

x/2 = y/2

x = y

So, f isone-one.

Surjection test:

Let y be anyelement in the co-domain (A), such that f(x) = y for someelement x in A (domain)

f(x) = y

x/2 = y

x = 2y, which maynot be in A.

For example,if y = 1, then

x = 2, which is not in A.

So, f is not onto.

So, f is not bijective.

(ii) Given g: A →A, given by g (x) = |x|

Now we have to showthat the given function is one-one and on-to

Injection test:

Let x and y be any two elements in the domain (A), suchthat f(x) = f(y).

g(x) = g(y)

|x| = |y|

x = ± y

So, f is notone-one.

Surjection test:

For y = -1,there is no value of x in A.

So, g is notonto.

So, g is not bijective.

(iii) Given h:A → A, given by h (x) = x2

Now we have to showthat the given function is one-one and on-to

Injection test:

Let x and y beany two elements in the domain (A), such that h(x) = h(y).

h(x) = h(y)

x2 = y2

x = ±y

So, f is notone-one.

Surjection test:

For y = – 1,there is no value of x in A.

So, h is not onto.

So, h is not bijective.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×