MENU
Question -

Give an example of a function 
(i) Which is one-one but not onto.
(ii) Which is not one-one but onto.
(iii) Which is neither one-one nor onto.



Answer -

(i) Letf: Z → Z given by f(x) = 3x + 2

Let us check one-onecondition on f(x) = 3x + 2

Injectivity:

Let x and y be any two elements in the domain (Z), suchthat f(x) = f(y).

 f (x)= f(y)

3x + 2=3y + 2

 3x = 3y

 x = y

 f(x)= f(y) 

 x = y

So, f isone-one.

Surjectivity:

Let y be any element in the co-domain (Z), such that f(x)= y for some element x in Z(domain).

Let f(x) = y

3x + 2 = y

 3x = y –2

 x = (y –2)/3. It may not be in the domain (Z)

Because if we take y = 3,

x = (y – 2)/3 =(3-2)/3 = 1/3  domain Z.

So, for every elementin the co domain there need not be any element in the domain suchthat f(x) = y.

Thus, f is not onto.

(ii) Example for thefunction which is not one-one but onto

Letf: Z → N {0} given by f(x) = |x|

Injectivity:

Let x and y be any two elements in the domain (Z),

Such that f(x)= f(y).

|x| = |y|

 x = ± y

So, different elementsof domain f may give the same image.

So, f is not one-one.

Surjectivity:

Let y be any element in the co domain (Z), such that f(x)= y for some element x in Z (domain).

f(x) = y

|x| = y

x = ± y

Which is an elementin Z (domain).

So, for every element in the co-domain, there exists a pre-image in the domain.

Thus, f is onto.

(iii) Example for thefunction which is neither one-one nor onto.

Letf: Z → Z given by f(x) = 2x2 + 1

Injectivity:

Let x and y be any two elements in the domain (Z), suchthat f(x) = f(y).

f(x) = f(y)

 2x2+1 = 2y2+1

 2x2 = 2y2

 x= y2

 x = ± y

So, different elementsof domain f may give the same image.

Thus, f is not one-one.

Surjectivity:

Let y be any element in the co-domain (Z), such that f(x)= y for some element x in Z (domain).

f (x) = y

 2x2+1=y

 2x2= y − 1

 x2 =(y-1)/2

 x = √((y-1)/2)  Z always.

For example, if we take, y = 4,

x = ± √ ((y-1)/2)

= ± √ ((4-1)/2)

= ± √ (3/2) Z

So, x may not be in Z (domain).

Thus, f isnot onto.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×