MENU
Question -

Find the sum of the following arithmetic progressions:
(i) 50, 46, 42, …. to 10 terms

(ii) 1, 3, 5, 7, … to 12 terms

(iii) 3, 9/2, 6, 15/2, … to 25 terms

(iv) 41, 36, 31, … to 12 terms

(v) a+b, a-b, a-3b, … to 22 terms

(vi) (x – y)2, (x2 + y2), (x + y)2,… to n terms

(vii) (x – y)/(x + y), (3x – 2y)/(x + y), (5x – 3y)/(x + y), … to n terms



Answer -

(i) 50, 46, 42, …. to 10terms

n = 10

First term, a = a1 =50

Common difference, d =a2 – a= 46 – 50 = -4

By using the formula,

S = n/2 (2a + (n – 1)d)

Substitute the valuesof ‘a’ and ‘d’, we get

S = 10/2 (100 + (9)(-4))

= 5 (100 – 36)

= 5 (64)

= 320

The sum of the givenAP is 320.

(ii) 1, 3, 5, 7, … to 12terms

n = 12

First term, a = a1 =1

Common difference, d =a2 – a= 3 – 1 = 2

By using the formula,

S = n/2 (2a + (n – 1)d)

Substitute the valuesof ‘a’ and ‘d’, we get

S = 12/2 (2(1) +(12-1) (2))

= 6 (2 + (11) (2))

= 6 (2 + 22)

= 6 (24)

= 144

The sum of the givenAP is 144.

(iii) 3, 9/2, 6, 15/2, … to25 terms

n = 25

First term, a = a1 =3

Common difference, d =a2 – a= 9/2 – 3 = (9 – 6)/2 = 3/2

By using the formula,

S = n/2 (2a + (n – 1)d)

Substitute the valuesof ‘a’ and ‘d’, we get

S = 25/2 (2(3) +(25-1) (3/2))

= 25/2 (6 + (24)(3/2))

= 25/2 (6 + 36)

= 25/2 (42)

= 25 (21)

= 525

The sum of the givenAP is 525.

(iv) 41, 36, 31, … to 12terms

n = 12

First term, a = a1 =41

Common difference, d =a2 – a= 36 – 41 = -5

By using the formula,

S = n/2 (2a + (n – 1)d)

Substitute the valuesof ‘a’ and ‘d’, we get

S = 12/2 (2(41) +(12-1) (-5))

= 6 (82 + (11) (-5))

= 6 (82 – 55)

= 6 (27)

= 162

The sum of the givenAP is 162.

(v) a+b, a-b, a-3b, … to22 terms

n = 22

First term, a = a1 =a+b

Common difference, d =a2 – a= (a-b) – (a+b) = a-b-a-b = -2b

By using the formula,

S = n/2 (2a + (n – 1)d)

Substitute the valuesof ‘a’ and ‘d’, we get

S = 22/2 (2(a+b) +(22-1) (-2b))

= 11 (2a + 2b + (21)(-2b))

= 11 (2a + 2b – 42b)

= 11 (2a – 40b)

= 22a – 440b

The sum of the givenAP is 22a – 440b.

(vi) (x – y)2,(x2 + y2), (x + y)2, … to n terms

n = n

First term, a = a1 =(x-y)2

Common difference, d =a2 – a= (x2 + y2)– (x-y)2 = 2xy

By using the formula,

S = n/2 (2a + (n – 1)d)

Substitute the valuesof ‘a’ and ‘d’, we get

S = n/2 (2(x-y)2 +(n-1) (2xy))

= n/2 (2 (x2 +y2 – 2xy) + 2xyn – 2xy)

= n/2 × 2 ((x2 +y2 – 2xy) + xyn – xy)

= n (x2 +y2 – 3xy + xyn)

The sum of the givenAP is n (x2 + y2 – 3xy + xyn).

(vii) (x – y)/(x + y), (3x –2y)/(x + y), (5x – 3y)/(x + y), … to n terms

n = n

First term, a = a1 =(x-y)/(x+y)

Common difference, d =a2 – a= (3x – 2y)/(x + y) – (x-y)/(x+y) = (2x– y)/(x+y)

By using the formula,

S = n/2 (2a + (n – 1)d)

Substitute the valuesof ‘a’ and ‘d’, we get

S = n/2(2((x-y)/(x+y)) + (n-1) ((2x – y)/(x+y)))

= n/2(x+y) {n (2x-y) –y}

The sum of the givenAP is n/2(x+y) {n (2x-y) – y}

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×