MENU
Question -

The Fibonacci sequence is defined by a1 = 1 = a2,an = an–1 + an–2 for n > 2.Find (an+1)/an for n = 1, 2, 3, 4, 5.



Answer -

Given:

a1 = 1

a2 = 1

an = an–1 +an–2

When n = 1:

(an+1)/a=(a1+1)/a1

= a2/a1

= 1/1

= 1

a3 = a3–1 +a3–2

= a2 +a1

= 1 + 1

= 2

When n = 2:

(an+1)/a=(a2+1)/a2

= a3/a2

= 2/1

= 2

a4 = a4–1 +a4–2

= a3 +a2

= 2 + 1

= 3

When n = 3:

(an+1)/a=(a3+1)/a3

= a4/a3

= 3/2

a5 = a5–1 +a5–2

= a4 +a3

= 3 + 2

= 5

When n = 4:

(an+1)/a=(a4+1)/a4

= a5/a4

= 5/3

a6 = a6–1 +a6–2

= a5 +a4

= 5 + 3

= 8

When n = 5:

(an+1)/a=(a5+1)/a5

= a6/a5 =8/5

Value of (an+1)/an whenn = 1, 2, 3, 4, 5 are 1, 2, 3/2, 5/3, 8/5

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×