MENU
Question -

The Fibonacci sequence is defined by a1┬а= 1┬а= a2,an┬а= anтАУ1┬а+ anтАУ2┬аfor n > 2.Find (an+1)/an┬аfor n = 1, 2, 3, 4, 5.



Answer -

Given:

a1┬а= 1

a2┬а= 1

an┬а= anтАУ1┬а+anтАУ2

When n = 1:

(an+1)/an┬а=(a1+1)/a1

= a2/a1

= 1/1

= 1

a3┬а= a3тАУ1┬а+a3тАУ2

= a2┬а+a1

= 1 + 1

= 2

When n = 2:

(an+1)/an┬а=(a2+1)/a2

= a3/a2

= 2/1

= 2

a4┬а= a4тАУ1┬а+a4тАУ2

= a3┬а+a2

= 2 + 1

= 3

When n = 3:

(an+1)/an┬а=(a3+1)/a3

= a4/a3

= 3/2

a5┬а= a5тАУ1┬а+a5тАУ2

= a4┬а+a3

= 3 + 2

= 5

When n = 4:

(an+1)/an┬а=(a4+1)/a4

= a5/a4

= 5/3

a6┬а= a6тАУ1┬а+a6тАУ2

= a5┬а+a4

= 5 + 3

= 8

When n = 5:

(an+1)/an┬а=(a5+1)/a5

= a6/a5┬а=8/5

тИ┤ Value of (an+1)/an┬аwhenn = 1, 2, 3, 4, 5 are 1, 2, 3/2, 5/3, 8/5

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×