MENU
Question -

A sequence is defined by an = n3 – 6n2 +11n – 6, n  N. Show that the first threeterms of the sequence are zero and all other terms are positive.



Answer -

Given:

an = n3 –6n2 + 11n – 6, n  N

By using the values n= 1, 2, 3 we can find the first three terms.

When n = 1:

a1 =(1)3 – 6(1)2 + 11(1) – 6

= 1 – 6 + 11 – 6

= 12 – 12

= 0

When n = 2:

a2 =(2)3 – 6(2)2 + 11(2) – 6

= 8 – 6(4) + 22 – 6

= 8 – 24 + 22 – 6

= 30 – 30

= 0

When n = 3:

a3 =(3)3 – 6(3)2 + 11(3) – 6

= 27 – 6(9) + 33 – 6

= 27 – 54 + 33 – 6

= 60 – 60

= 0

This shows that thefirst three terms of the sequence is zero.

Now, let’s check forwhen n = n:

an = n3 –6n2 + 11n – 6

= n3 –6n2 + 11n – 6 – n + n – 2 + 2

= n3 –6n2 + 12n – 8 – n + 2

= (n)3 –3×2n(n – 2) – (2)3 – n + 2

By using the formula,{(a – b)3 = (a)3 – (b)3 – 3ab(a– b)}

an =(n – 2)3 – (n – 2)

Here, n – 2 willalways be positive for n > 3

 an isalways positive for n > 3

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×