Question -
Answer -
When three coins are tossed, the sample space is given by
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
(i) Two events that are mutually exclusive can be
A: getting no heads and B: getting no tails
This is because sets A = {TTT} and B = {HHH} are disjoint.
(ii) Three events that are mutually exclusive and exhaustive can be
A: getting no heads
B: getting exactly one head
C: getting at least two heads
i.e.,
A = {TTT}
B = {HTT, THT, TTH}
C = {HHH, HHT, HTH, THH}
This is because A ∩ B = B ∩ C = C ∩ A = Φand A ∪ B ∪ C = S
(iii) Two events that are not mutually exclusive can be
A: getting three heads
B: getting at least 2 heads
i.e.,
A = {HHH}
B = {HHH, HHT, HTH, THH}
This is because A ∩ B = {HHH} ≠ Φ
(iv) Two events which are mutually exclusive but not exhaustive can be
A: getting exactly one head
B: getting exactly one tail
That is
A = {HTT, THT, TTH}
B = {HHT, HTH, THH}
It is because, A ∩ B =Φ, but A ∪ B ≠ S
(v) Three events that are mutually exclusive but not exhaustive can be
A: getting exactly three heads
B: getting one head and two tails
C: getting one tail and two heads
i.e.,
A = {HHH}
B = {HTT, THT, TTH}
C = {HHT, HTH, THH}
This is because A ∩ B = B ∩ C = C ∩ A = Φ, but A ∪ B ∪ C ≠ S