MENU
Question -

If P(n, 5) : P(n, 3) = 2 : 1, find n.



Answer -

Given:

P(n, 5) : P(n, 3) = 2: 1

P(n, 5) / P(n, 3) = 2/ 1

By using the formula,

P (n, r) = n!/(n – r)!

P (n, 5) = n!/ (n –5)!

P (n, 3) = n!/ (n –3)!

So, from the question,

P (n, 5) / P(n, 3) = 2/ 1

Substituting theobtained values in above expression we get,

[n!/(n – 5)!] / [n!/ (n – 3)!] = 2/1

[n!/(n – 5)!] × [(n – 3)! / n!] = 2/1

(n – 3)! / (n – 5)! =2/1

[(n –3) (n – 3 – 1) (n – 3 – 2)!] / (n – 5)! = 2/1

[(n –3) (n – 4) (n – 5)!] / (n – 5)! = 2/1

(n – 3)(n – 4) = 2

n2 –3n – 4n + 12 = 2

n2 –7n + 12 – 2 = 0

n2 –7n + 10 = 0

n2 –5n – 2n + 10 = 0

n (n – 5) – 2(n – 5) =0

(n – 5) (n – 2) = 0

n = 5 or 2

For, P (n, r): n ≥ r

 n =5 [for, P (n, 5)]

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×