MENU
Question -

If P (11, r) = P (12, r – 1), find r.



Answer -

Given:

P (11, r) = P (12, r –1)

By using the formula,

P (n, r) = n!/(n – r)!

P (11, r) = 11!/(11 –r)!

P (12, r-1) = 12!/(12– (r-1))!

= 12!/(12 – r + 1)!

= 12!/(13 – r)!

So, from the question,

P (11, r) = P (12, r –1)

Substituting theobtained values in above expression we get,

11!/(11 – r)! =12!/(13 – r)!

Upon evaluating,

(13 – r)! / (11 – r)!= 12!/11!

[(13– r) (13 – r – 1) (13 – r – 2)!] / (11 – r)! = (12×11!)/11!

[(13– r) (12 – r) (11 -r)!] / (11 – r)! = 12

(13 – r) (12 – r) = 12

156 – 12r – 13r + r2 =12

156 – 12 – 25r + r2 =0

r2 –25r + 144 = 0

r2 –16r – 9r + 144 = 0

r(r – 16) – 9(r – 16)= 0

(r – 9) (r – 16) = 0

r = 9 or 16

For, P (n, r): r ≤ n

 r =9 [for, P (11, r)]

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×