MENU
Question -

If O is the centre of the circle, find the value of x in each of the following figures.
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)



Answer -

We have to find   in each figure.
(i) It is given that  
∠AOC+∠COB=180°   [Linear pair]∠AOC+∠COB=180°   Linear pair
 
As we know the angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Hence  
(ii) As we know that   = x                 [Angles in the same segment]
line   is diameter passing through centre,
So,

∠BCA= 90°       [Angle inscribed in a semicircle is a right angle ]∠BCA= 90°       Angle inscribed in a semicircle is a right angle 
(iii) It is given that
 
So  
And  
 
Then  
Hence  
(iv)  
    (Linear pair)
 
And
Hence,
 (v) It is given that  
  is an isosceles triangle.
    
Therefore  

And,

Hence, 
(vi) It is given that  
And
ΔOCA is an isosceles triangle.∆OCA is an isosceles triangle.
So
 
Hence,  
(vii)               (Angle in the same segment)
In   we have
 
Hence  
(viii)
   
As     (Radius of circle)

Therefore,   is an isosceles triangle.
So            (Vertically opposite angles)
Hence,  
(ix) It is given that  
  …… (1)          (Angle in the same segment)
∠ADB=∠ACB=32°∠ADB=∠ACB=32°  ......(2)           (Angle in the same segment)
Because   and   are on the same segment   of the circle.
Now from equation (1) and (2) we have
 
Hence,  
(x) It is given that  
∠BAC=∠BDC=35°∠BAC=∠BDC=35°                (Angle in the same segment)
 Now in ΔBDC∆BDC we have
∠BDC+∠DCB+∠CBD=180°⇒35°+65°+∠CBD=180°⇒∠CBD=180°−100°=80°∠BDC+∠DCB+∠CBD=180°⇒35°+65°+∠CBD=180°⇒∠CBD=180°-100°=80°
Hence,  
(xi)
(xii)
   

            (Angle in the same segment)
  is an isosceles triangle
So,                    (Radius of the same circle)
Then  
Hence  


Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×