MENU
Question -

एक परीक्षण में पासे के एक जोड़े को फेंकते हैं और उन पर प्रकट संख्याओं को लिखते हैं। निम्नलिखित संख्याओं का वर्णन कीजिए।
A : प्राप्त संख्याओं का योग 8 से अधिक है।
B : दोनों पासों पर संख्या 2 प्रकट होती है।
C : प्रकट संख्याओं का योग कम से कम 7 है और 3 का गुणज है।
इन घटनाओं के कौन-कौन से युग्म परस्पर अपवर्जी हैं ?



Answer -

जब दो पासे फेंके जाते हैं, तो कुल संभावित परिणामों की संख्या = 6 x 6 = 36
A = प्राप्त संख्याओं का योग 8 से अधिक है।
= {(3, 6), (4, 5), (5, 4), (6, 3), (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)}
B = कम से कम एक पासे पर संख्या 2 प्रकट होती है।
= {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6)}
C = प्रकट संख्याओं का योग कम से कम 7 है और 3 का गुणज है।
= प्रकट संख्याओं का योग 9 और 12 है जो कि 3 का गुणज है।
= {{3, 6), (6, 3), (4, 5), (5, 4), (6, 6)}
A ∩ C = {3, 6), (4, 5), (5, 4), (6, 3), (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)} ∩ {(3, 6), (6, 3), (5, 4), (6, 6)}
= {(3, 6), (6, 3), (4, 5), (5,4), (6, 6)}
A ∩ B = {(3, 6), (6, 3), (4, 5), (5, 4), (4, 6), (6, 4), (5, 5), (5, 6), (6, 5), (6, 6) ∩ {(1, 2), (3, 2), (2, 1), (2, 3), (4, 2), (2, 4), (5, 2), (2, 5), (2, 6), (6, 2)} = φ
B ∩ C = {(1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (2, 4), (4, 2), (2, 5), (5, 2), (2, 6), (6, 2)} ∩ {(3, 6), (6, 3), (4, 5), (5, 4), (6, 6)} = φ
A ∩ B = φ, B ∩ C = φ अर्थात् A और B, B और C परस्पर अपवर्जी हैं।
परन्तु A ∩ C ≠ φ , अत: A और C परस्पर अपवर्जी नहीं हैं।

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×