Question -
Answer -
(i) सत्ये।
A : पहले पासे पर सम संख्या का होना
B : पहले पासे पर विषम संख्या का होना A और B में कोई भी घटना सभान नहीं है।
A ∩ B = φ ⇒ A और B परस्पर अपवर्जी घटनाएँ हैं।
(ii) सत्य :
A : पहले पासे पर सम संख्या होना
B : पहले पासे पर विषम संख्या होना
A ∪ B = पहले पासे पर सम या विषम कोई भी संख्या हो सकती है, दूसरे पासे पर 1 से 6 तक कोई भी संख्या हो सकती है।
अर्थात् A और B परस्पर अपवर्जी और नि:शेष घटनाएँ हैं।
(iii) सत्य :
B’ = {पहले पासे पर विषम संख्या होना}
= पहले पासे पर विषम संख्या न होना
= पहले पासे पर सम संख्या होना।
= A
(iv) असत्य
A = पहले पासे पर सम संख्या होना
C = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
A और C में (2, 1), (2, 2), (2, 3), (4, 1) समान घटनाएँ हैं।
A ∩ C ≠ φ
अतः A और C परस्पर अपवर्जी नहीं हैं।
(v) असत्य B’ = A
A ∩ B’ = A ∩ A = A ≠ φ
A तथा B’ परस्पर अपवर्जी नहीं हैं।
(vi) असत्य A’ = B, B’ = A
A’ ∩ B’ = B ∩ A = φ
परन्तु A’ ∩ C = B ∩ C = {x : x पहले पासे पर विषम संख्या होना} {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
= {(1,1), (1, 2), (1, 3), (1, 4), (3, 1), (3, 2)} ≠ φ
B’ ∩ C = A ∩ C [B’ = A]
= {x : x, पहले पासे पर सम संख्या का होना} ∩ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
(2, 1), (2, 2), (2, 3), (4, 1), A और C दोनों में समान घटनाएँ हैं।
B’ ∩ C ≠ φ
अर्थात् A’, B’, और C परस्पर अपवर्जी नहीं हैं और न ही नि:शेष हैं।