MENU
Question -

Solving the following quadratic equations by factorization method:

(i) x2┬а+ 10ix тАУ 21 = 0

(ii) x2┬а+ (1 тАУ 2i)x тАУ 2i = 0

(iii) x2┬атАУ (2тИЪ3 + 3i) x + 6тИЪ3i = 0

(iv) 6x2┬атАУ 17ix тАУ 12 = 0



Answer -

(i)┬аx2┬а+10ix тАУ 21 = 0

Given: x2┬а+10ix тАУ 21 = 0

x2┬а+10ix тАУ 21 ├Ч 1 = 0

We know, i2┬а=тАУ1┬атЗТ┬а1 = тАУi2

By substituting 1 = тАУi2┬аinthe above equation, we get

x2┬а+10ix тАУ 21(тАУi2) = 0

x2┬а+10ix + 21i2┬а= 0

x2┬а+3ix + 7ix + 21i2┬а= 0

x(x + 3i) + 7i(x + 3i)= 0

(x + 3i) (x + 7i) = 0

x + 3i = 0 or x + 7i =0

x = тАУ3i or тАУ7i

тИ┤ The roots of thegiven equation are тАУ3i, тАУ7i

(ii)┬аx2┬а+(1 тАУ 2i)x тАУ 2i = 0

Given: x2┬а+(1 тАУ 2i)x тАУ 2i = 0

x2┬а+ xтАУ 2ix тАУ 2i = 0

x(x + 1) тАУ 2i(x + 1) =0

(x + 1) (x тАУ 2i) = 0

x + 1 = 0 or x тАУ 2i =0

x = тАУ1 or 2i

тИ┤ The roots of thegiven equation are тАУ1, 2i

(iii)┬аx2┬атАУ(2тИЪ3 + 3i) x + 6тИЪ3i = 0

Given: x2┬атАУ(2тИЪ3 + 3i) x + 6тИЪ3i = 0

x2┬атАУ(2тИЪ3x + 3ix) + 6тИЪ3i = 0

x2┬атАУ2тИЪ3x тАУ 3ix + 6тИЪ3i = 0

x(x тАУ 2тИЪ3) тАУ 3i(x тАУ2тИЪ3) = 0

(x тАУ 2тИЪ3) (x тАУ 3i) = 0

(x тАУ 2тИЪ3) = 0 or (x тАУ3i) = 0

x = 2тИЪ3 or x = 3i

тИ┤ The roots of thegiven equation are 2тИЪ3, 3i

(iv)┬а6x2┬атАУ17ix тАУ 12 = 0

Given: 6x2┬атАУ17ix тАУ 12 = 0

6x2┬атАУ17ix тАУ 12 ├Ч 1 = 0

We know, i2┬а=тАУ1┬атЗТ┬а1 = тАУi2

By substituting 1 = тАУi2┬аinthe above equation, we get

6x2┬атАУ17ix тАУ 12(тАУi2) = 0

6x2┬атАУ17ix + 12i2┬а= 0

6x2┬атАУ9ix тАУ 8ix + 12i2┬а= 0

3x(2x тАУ 3i) тАУ 4i(2x тАУ3i) = 0

(2x тАУ 3i) (3x тАУ 4i) =0

2x тАУ 3i = 0 or 3x тАУ 4i= 0

2x = 3i or 3x = 4i

x = 3i/2 or x = 4i/3

тИ┤ The roots of thegiven equation are 3i/2, 4i/3

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×