MENU
Question -

Show that the statement
p: “If x is a real number such that x3 + 4x = 0, then x is 0” is true by
(i) direct method
(ii) method of contradiction
(iii) method of contrapositive



Answer -

p:“If x is a real number such that x3 +4x = 0, then x is 0”.

Let qx isa real number such that x3 + 4x = 0

rx is0.

(i) To show that statement p istrue, we assume that q is true and then show that r istrue.

Therefore, let statement q betrue.

 x3 + 4x = 0

(x2 +4) = 0

 x = 0 or x+ 4 = 0

However, since isreal, it is 0.

Thus, statement r istrue.

Therefore, the given statement istrue.

(ii) To show statement p tobe true by contradiction, we assume that p is not true.

Let x be a realnumber such that x3 + 4x = 0 andlet x is not 0.

Therefore, x3 +4x = 0

x (x2 +4) = 0

x = 0or x2 + 4 = 0

x = 0or x2 = – 4

However, x isreal. Therefore, = 0, which is a contradiction since we haveassumed that x is not 0.

Thus, the given statement p istrue.

(iii) To prove statement p tobe true by contrapositive method, we assume that r is falseand prove that q must be false.

Here, r is falseimplies that it is required to consider the negation of statement r.This obtains the following statement.

rx is not 0.

It can be seen that (x2 +4) will always be positive.

x ≠ 0implies that the product of any positive real number with x isnot zero.

Let us consider the productof x with (x2 + 4).

 (x2 + 4) ≠ 0

 x3 + 4x ≠ 0

This shows that statement q isnot true.

Thus, it has been proved that

r  q

Therefore, the givenstatement p is true.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×