MENU

Chapter 14 गणितीय विवेचन (Mathematical Reasoning) Ex 14.2 Solutions

Question - 1 : -
निम्नलिखित कथन का निषेधन लिखिए।
(i) चैन्नई, तमिलनाडु की राजधानी है।
(ii) √2 एक सम्मिश्र संख्या नहीं है।
(iii) सभी त्रिभुज समबाहु त्रिभुज नहीं होते हैं।
(iv) संख्या 2 संख्या 7 से अधिक है।
(v) प्रत्येक प्राकृत संख्या एक पूर्णाक होती है।

Answer - 1 : -

(i) चैन्नई, तमिलनाडु की राजधानी नहीं है।
(ii) √2 एक सम्मिश्र संख्या है।
(iii) सभी त्रिभुज समबाहु त्रिभुज हैं।
(iv) संख्या 2 संख्या 7 से बड़ी नहीं है।
(v) प्रत्येक प्राकृत संख्या एक पूर्णीक नहीं है।

Question - 2 : -
क्या निम्नलिखित कथन युग्म (कथन के जोड़े) एक दूसरे के निषेधन हैं?
(i) संख्या x एक परिमेय संख्या नहीं है।
संग्ख्या x एक अपरिमेय संख्या नहीं है।
(ii) संख्या एक परिमेय संख्या है।
संख्या एक अपरिमेय संख्या है।

Answer - 2 : -

(i)
कथन ” संख्या x एक परिमेय संख्या नहीं है।” का निषेधन संख्या x एक परिमेय संख्या है। यो x एक अपरिमेय संख्या नहीं है। यही दूसरा कथन है। अतः दिए गए कथन एक दूसरे के निषेधन हैं।

(ii) 
कथन ” संख्या x एक परिमेय संख्या है।” का निषेधन संख्या ४ एक अपरिमेय संख्या है। जो कि दूसरे कथन के समान है।
अतः यह कथन एक दूसरे के निषेधन हैं।

Question - 3 : -
निम्नलिखित मिश्र कथन के घटक कथन ज्ञात कीजिए और जाँचिए कि वे सत्य हैं या असत्य हैं।
(i) संख्या 3 अभाज्य है या विषम है।
(ii) समस्त (सभी) पूर्णांक धन या ऋण हैं।
(iii) संख्या 100 संख्याओं 3, 11 और 5 से भाज्य हैं।

Answer - 3 : -

(i) p : संख्या 3 अभाज्य है। यह कथन सत्य है।
q : संख्या 3 विषम संख्या है। यह कथन सत्य है।
(ii) p : सभी पूर्णांक धन हैं। यह कथन सत्य है।
q : सभी पूर्णांक ऋण हैं। यह कथन सत्य है।
(iii) p : 100, 3 से भाज्य है। यह कथन असत्य है।
q : 100, 11 से भाज्य है। यह कथन असत्य है।
r : 100, 5 से भाज्य है। यह कथन सत्य है।

Free - Previous Years Question Papers
Any questions? Ask us!
×