MENU
Question -

12 + 22 +32 + … + n2 = [n (n+1) (2n+1)]/6



Answer -

Let us consider P (n) = 12 + 22 +32 + … + n2 = [n (n+1) (2n+1)]/6

For, n = 1

P (1) = [1 (1+1) (2+1)]/6

1 = 1

P (n) is true for n = 1

Let P (n) is true for n = k, so

P (k): 12 + 22 + 32 +… + k2 = [k (k+1) (2k+1)]/6

Let’s check for P (n) = k + 1, so

P (k) = 12 + 22 + 32 +– – – – – + k2 + (k + 1)2 = [k + 1 (k+2)(2k+3)] /6

= 12 + 22 + 32 +– – – – – + k2 + (k + 1)2

= [k + 1 (k+2) (2k+3)] /6 + (k + 1)2

= (k +1) [(2k2 + k)/6 + (k + 1)/1]

= (k +1) [2k2 + k + 6k + 6]/6

= (k +1) [2k2 + 7k + 6]/6

= (k +1) [2k2 + 4k + 3k + 6]/6

= (k +1) [2k(k + 2) + 3(k + 2)]/6

= [(k +1) (2k + 3) (k + 2)] / 6

P (n) is true for n = k + 1

Hence, P (n) is true for all n N.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×