MENU
Question -

1/3.5 + 1/5.7 + 1/7.9 + … +1/(2n+1)(2n+3) = n/3(2n+3)



Answer -

Let P (n) = 1/3.5 + 1/5.7 + 1/7.9 + … + 1/(2n+1)(2n+3) =n/3(2n+3)

Let us check for n = 1,

P (1): 1/3.5 = 1/3(2.1+3)

: 1/15 = 1/15

P (n) is true for n = 1.

Now, let us check for P (n) is true for n = k, and have toprove that P (k + 1) is true.

P (k) = 1/3.5 + 1/5.7 + 1/7.9 + … + 1/(2k+1)(2k+3) =k/3(2k+3) … (i)

So,

1/3.5 + 1/5.7 + 1/7.9 + … + 1/(2k+1)(2k+3) +1/[2(k+1)+1][2(k+1)+3]

1/3.5 + 1/5.7 + 1/7.9 + … + 1/(2k+1)(2k+3) + 1/(2k+3)(2k+5)

Now substituting the value of P (k) we get,

= k/3(2k+3) + 1/(2k+3)(2k+5)

= [k(2k+5)+3] / [3(2k+3)(2k+5)]

= (k+1) / [3(2(k+1)+3)]

P (n) is true for n = k + 1

Hence, P (n) is true for all n N.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×