MENU
Question -

1/1.2 + 1/2.3 + 1/3.4 + тАж +1/n(n+1) = n/(n+1)



Answer -

Let P (n) = 1/1.2 + 1/2.3 + 1/3.4 + тАж + 1/n(n+1) = n/(n+1)

For, n = 1

P (n) = 1/1.2 = 1/1+1

1/2 = 1/2

P (n) is true for n = 1

LetтАЩs check for P (n) is true for n = k,

1/1.2 + 1/2.3 + 1/3.4 + тАж + 1/k(k+1) + k/(k+1) (k+2) =(k+1)/(k+2)

Then,

1/1.2 + 1/2.3 + 1/3.4 + тАж + 1/k(k+1) + k/(k+1) (k+2)

= 1/(k+1)/(k+2) + k/(k+1)

= 1/(k+1) [k(k+2)+1]/(k+2)

= 1/(k+1) [k2┬а+ 2k + 1]/(k+2)

=1/(k+1) [(k+1) (k+1)]/(k+2)

= (k+1) / (k+2)

P (n) is true for n = k + 1

Hence, P (n) is true for all n тИИ N.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×