MENU
Question -

BD and CE are bisectors of тИаB and тИаC of an isosceles тИаABC with AB = AC. Prove that BD = CE.



Answer -

Given : In тИЖABC, AB = AC
BD and CE are the bisectors of тИаB and тИаC respectively
To prove : BD = CE
Proof: In тИЖABC, AB = AC
тИ┤ тИаB = тИаC (Angles opposite to equal sides)
тИ┤┬а ┬атИаB =┬а тИаC
┬аGiven : In тИЖABC, AB = AC
BD and CE are the bisectors of тИаB and тИаC respectively
To prove : BD = CE
Proof: In тИЖABC, AB = AC
тИ┤ тИаB = тИаC (Angles opposite to equal sides)
тИ┤┬а ┬атИаB =┬а тИаC
┬аGiven : In тИЖABC, AB = AC
BD and CE are the bisectors of тИаB and тИаC respectively
To prove : BD = CE
Proof: In тИЖABC, AB = AC
тИ┤ тИаB = тИаC (Angles opposite to equal sides)
тИ┤┬а┬а┬атИаB =┬а┬атИаC
┬а
тИаDBC = тИаECB
Now, in тИЖDBC and тИЖEBC,
BC = BC (Common)
тИаC = тИаB (Equal angles)
тИаDBC = тИаECB (Proved)
тИ┤ тИЖDBC тЙЕ тИЖEBC (ASA axiom)
тИ┤ BD = CE

тИаDBC = тИаECB
Now, in тИЖDBC and тИЖEBC,
BC = BC (Common)
тИаC = тИаB (Equal angles)
тИаDBC = тИаECB (Proved)
тИ┤ тИЖDBC тЙЕ тИЖEBC (ASA axiom)
тИ┤ BD = CE

тИаDBC = тИаECB
Now, in тИЖDBC and тИЖEBC,
BC = BC (Common)
тИаC = тИаB (Equal angles)
тИаDBC = тИаECB (Proved)
тИ┤ тИЖDBC тЙЕ тИЖEBC (ASA axiom)
тИ┤ BD = CE

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×