MENU
Question -

Find the direction cosines of the sides of the triangle whose vertices are (3, 5, –4), (-1, 1, 2) and (–5, –5, –2).



Answer -

Given:

The vertices are (3,5, –4), (-1, 1, 2) and (–5, –5, –2).

The direction cosinesof the two points passing through A(x1, y1, z1)and B(x2, y2, z2) is given by (x2 –x1), (y2-y1), (z2-z1)

Firstly let us findthe direction ratios of AB

Where, A = (3, 5, -4)and B = (-1, 1, 2)

Ratio of AB = [(x2 –x1)2, (y2 – y1)2,(z2 – z1)2]

= (-1-3), (1-5),(2-(-4)) = -4, -4, 6

Then by using theformula,

√[(x2 –x1)2 + (y2 – y1)2 +(z2 – z1)2]

√[(-4)2 +(-4)2 + (6)2] = √(16+16+36)

= √68

= 2√17

Now let us find thedirection cosines of the line AB

By using the formula,

-4/2√17 , -4/2√17,6/2√17

Or -2/√17, -2/√17,3/√17

Similarly,

Let us find thedirection ratios of BC

Where, B = (-1, 1, 2)and C = (-5, -5, -2)

Ratio of AB = [(x2 –x1)2, (y2 – y1)2,(z2 – z1)2]

= (-5+1), (-5-1),(-2-2) = -4, -6, -4

Then by using theformula,

√[(x2 –x1)2 + (y2 – y1)2 +(z2 – z1)2]

√[(-4)2 +(-6)2 + (-4)2] = √(16+36+16)

= √68

= 2√17

Now let us find thedirection cosines of the line AB

By using the formula,

-4/2√17, -6/2√17,-4/2√17

Or -2/√17, -3/√17,-2/√17

Similarly,

Let us find thedirection ratios of CA

Where, C = (-5, -5,-2) and A = (3, 5, -4)

Ratio of AB = [(x2 –x1)2, (y2 – y1)2,(z2 – z1)2]

= (3+5), (5+5), (-4+2)= 8, 10, -2

Then by using theformula,

√[(x2 –x1)2 + (y2 – y1)2 +(z2 – z1)2]

√[(8)2 +(10)2 + (-2)2] = √(64+100+4)

= √168

= 2√42

Now let us find thedirection cosines of the line AB

By using the formula,

8/2√42, 10/2√42,-2/2√42

Or 4/√42, 5/√42,-1/√42

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×