MENU
Question -

If p and q are the lengths ofperpendiculars from the origin to the lines x cos θ − y sin θ = k cos 2θ and xsec θ + y cosec θ = k, respectively, prove that p2 + 4q2 =k2



Answer -

Given:
The equations of given lines are
x cos θ – y sin θ = k cos 2θ …………………… (1)
x sec θ + y cosec θ = k ……………….… (2)
Perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by

q = k cos θ sin θ

Multiply both sides by 2, we get

2q = 2k cos θ sin θ = k × 2sin θ cos θ

2q = k sin 2θ

Squaring both sides, we get

4q2 = k2 sin22θ…………………(4)

Now add (3) and (4) we get

p2 + 4q2 = k2 cos2 2θ+ k2 sin2 2θ

p2 + 4q2 = k2 (cos2 2θ+ sin2 2θ) [Since, cos2 2θ + sin2 2θ= 1]

 p2 + 4q2 = k2

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×