MENU
Question -

In a тИЖABC, if a = тИЪ2, b = тИЪ3 and c = тИЪ5 show that its area is1/2 тИЪ6 sq. units.



Answer -

Given:

In a тИЖABC, a = тИЪ2, b = тИЪ3 and c = тИЪ5┬а

By using the formulas,

We know, cos A = (b2┬а+ c2┬атАУa2)/2bc

By substituting the values we get,

= [(тИЪ3)2┬а+ (тИЪ5)2┬атАУ(тИЪ2)2] / [2 ├Ч тИЪ3 ├Ч тИЪ5]

= 3/тИЪ15

We know, Area of тИЖABC = 1/2 bc sin A

To find sin A:

Sin A = тИЪ(1 тАУ cos2┬аA) [by usingtrigonometric identity]

= тИЪ(1 тАУ (3/тИЪ15)2)

= тИЪ(1- (9/15))

= тИЪ(6/15)

Now,

Area of тИЖABC = 1/2 bc sin A

= 1/2 ├Ч тИЪ3 ├Ч тИЪ5 ├Ч тИЪ(6/15)

= 1/2 тИЪ6 sq. units

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×