MENU

RD Chapter 10 Congruent Triangles Ex 10.3 Solutions

Question - 11 : -
Fill in the blanks so as to make the following statements true:
(i) If one angle of a linear pair is acute, then its other angle will be …….. .
(ii) A ray stands on a line, then the sum of the two adjacent angles so formed is ……… .
(iii) If the sum of two adjacent angles is 180°, then the …… arms of the two angles are opposite rays.

Answer - 11 : -

(i) If one angle of a linear pair is acute, then its other angle will be obtuse.
(ii) A ray stands on a line, then the sum of the two adjacent angles so formed is 180°.
(iii) If the sum of two adjacent angles is 180°, then the uncommon arms of the two angles are opposite rays.

Question - 12 : - Prove that the bisectors of a pair of vertically opposite angles are in the same straight line.

Answer - 12 : -

Given : Lines AB and CD intersect each other at O.
OE and OF are the bisectors of ∠AOC and ∠BOD respectively
 
To prove : OE and OF are in the same line
Proof : ∵ ∠AOC = ∠BOD (Vertically opposite angles)
∵ OE and OF are the bisectors of ∠AOC and ∠BOD
∴ ∠1 = ∠2 and ∠3 = ∠4
⇒ ∠1 = ∠2 =  ∠AOC and
∠3 = ∠4 =  ∠BOD
∴ ∠1 = ∠2 = ∠3 = ∠4
∵ AOB is a line
∴ ∠BOD + ∠AOD = 180° (Linear pair)
⇒ ∠3 + ∠4 + ∠AOD = 180°
⇒ ∠3 + ∠1 + ∠AOD = 180° (∵ ∠1 = ∠4)
∴ EOF is a straight line

Question - 13 : - If two straight lines intersect each other, prove that the ray opposite to the bisector of one of the angles thus formed bisects the vertically opposite angle.

Answer - 13 : -

Given : AB and CD intersect each other at O. OE is the bisector of ∠AOD and EO is produced to F.
 
To prove : OF is the bisector of ∠BOC
Proof : ∵ AB and CD intersect each other at O
∴ ∠AOD = ∠BOC (Vertically opposite angles)
∵OE is the bisector of ∠AOD
∴ ∠1 = ∠2
∵ AB and EF intersect each other at O
∴∠1 = ∠4 (Vertically opposite angles) Similarly, CD and EF intersect each other at O
∴ ∠2 = ∠3
But ∠1 = ∠2
∴ ∠3 = ∠4
OF is the bisector of ∠BOC

Free - Previous Years Question Papers
Any questions? Ask us!
×