MENU
Question -

4. Let the vertex of an angle ABC be located outside a circle and let thesides of the angle intersect equal chords AD and CE with the circle. Prove thatABC is equal to half the difference ofthe angles subtended by the chords AC and DE at the centre.



Answer -

Consider the diagram

In ΔAOD andΔCOE,

OA = OC (Radii of the same circle)

OD = OE (Radii of the same circle)

AD = CE (Given)

ΔAOD ΔCOE (SSS congruence rule)

OAD = OCE (By CPCT) … (1)

ODA = OEC (By CPCT) … (2)

Also,

OAD = ODA (As OA = OD) … (3)

From equations (1), (2), and (3), we obtain

OAD = OCE = ODA = OEC

Let OAD = OCE = ODA = OEC = x

In Δ OAC,

OA = OC

OCA = OAC (Let a)

In Δ ODE,

OD = OE

OED = ODE (Let y)

ADEC is a cyclic quadrilateral.

CAD + DEC = 180° (Opposite angles aresupplementary)

x + a + x + y =180°

2x + a + y =180°

y = 180º − 2x − a …(4)

However, DOE = 180º − 2y

And, AOC = 180º − 2a

DOE − AOC = 2a − 2= 2− 2 (180º − 2x − a)

= 4a +4x −360° … (5)

BAC + CAD = 180º (Linear pair)

BAC = 180º − CAD = 180º− (a + x)

Similarly, ACB = 180º− (a + x)

In ΔABC,

ABC + BAC + ACB = 180º(Angle sum property of a triangle)

ABC = 180º − BAC − ACB

= 180º − (180º − a − x)− (180º − a −x)

= 2a +2−180º

[4a + 4x − 360°]

ABC = [DOE − AOC] [Using equation (5)]

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×