MENU
Question -

AC और BD एक वृत्त की जीवाएँ हैं जो परस्पर समद्विभाजित करती हैं। सिद्ध कीजिए :
(i) AC और BD व्यास हैं।
(ii) ABCD एक आयत है।



Answer -

दिया है: AC तथा BD एक वृत्त की जीवाएँ हैं जो एक-दूसरे को बिन्दु 0 पर समद्विभाजित करती हैं। सिद्ध करना है :
(i) AC तथा BD वृत्त के व्यास हैं।
(ii) ABCD एक आयत है।
रचना : चतुर्भुज ABCD को पूरा किया।
उपपत्ति : (i) जीवा AC और BD एक-दूसरे को बिन्दु O पर समद्विभाजित करती हैं।
OA = OB = OC = OD
तब, OA, OB, OC और OD एक ऐसे वृत्त की त्रिज्याएँ हैं जिसका केन्द्र O है।
तब, AC = OA + OC = त्रिज्या + त्रिज्या = 2 x त्रिज्या
AC वृत्त का व्यास है।
BD भी O से होकर जाती है, तब BD भी वृत्त का व्यास है।
Proved.
(ii) AC व्यास है, तब ∠B = 90° तथा ∠D = 90° और BD व्यास है,
तब ∠A = 90° तथा ∠C = 90° (अर्द्धवृत्त में बना कोण समकोण होता है।)
तब, ABCD एक ऐसा चतुर्भुज है जिसका प्रत्येक अन्त: कोण 90° है तथा विकर्ण एक-दूसरे को अर्धित करते हैं।
अत: ABCD एक आयत है।
Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×