MENU
Question -

ABCD एक समान्तर चतुर्भुज है। A, B और C से जाने वाला वृत्त CD(यदि आवश्यक हो तो बढ़ाकर) को E पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AE = AD है।



Answer -

दिया है : ABCD एक समान्तर चतुर्भुज है जिसके शीर्षों A, B और C से एक वृत्त खींचा गया है जो भुजा CD को E पर काटता है। सिद्ध करना है :
AE = AD
उपपत्ति : ABCD एक समान्तर चतुर्भुज है, ∠B = ∠D …(1) (समान्तर चतुर्भुज के सम्मुख कोण बराबर होते हैं।)
A, B, C से जाने वाला वृत्त CD को E पर काटता है,
ABCE एक चक्रीय चतुर्भुज है। AED = ∠B …(2)
समीकरण (1) व (2) से,
∠ AED = ∠D (= ∠ADE)
∆ADE में,
∠AED = ∠ADE
∆ADE समद्विबाहु त्रिभुज है जिसमें
AD = AE (समान कोणों की सम्मुख भुजाएँ समान होती हैं।)
अतः AD = AE
Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×