MENU
Question -

किसी त्रिभुज ABC में, यदि ∠A का समद्विभाजक तथा BC का लम्बे समद्विभाजक प्रतिच्छेद करें, तो सिद्धकीजिए कि वे ΔABC के परिवृत्त पर प्रतिच्छेद करेंगे।



Answer -

दिया है : ΔABC के आधार BC का लम्ब समद्विभाजक XY है।
ABDC, ΔABC का परिवृत्त है। लम्ब समद्विभाजक XY परिवृत्त को D पर काटता है। XY, BC को M पर काटता है।
सिद्ध करना है : ∠A का समद्विभाजक भी बिन्दु D से होकर जाएगा।
रचना : DB तथा DC को मिलाया।
उपपत्ति : XY, BC का लम्ब समद्विभाजक है और यह परिवृत्त को बिन्दु D पर काटता है।
बिन्दु D, परिवृत्त पर भी है और XY पर भी।
ΔBDM और ΔCDM में,
BM = CM (XY, BC का लम्ब समद्विभाजक है।)
∠BMD = ∠CMD (XY ⊥ BC अर्थात प्रत्येक 90°)
MD = MD (उभयनिष्ठ भुजा है।)
ΔBDM = ΔCDM (S.A.S. से)
BD = CD (C.P.C.T.)
बिन्दु D, परिवृत्त पर भी स्थित है।
परिवृत्त में, जीवा BD = जीवा CD
चाप BD= चाप CD (समान चाप किसी वृत्त की समान जीवाएँ काटती हैं।)
चाप BD द्वारा बिन्दु A पर अन्तरित कोण = चाप CD द्वारा बिन्दु A पर अन्तरित कोण
∠BAD = ∠CAD
अत: A का समद्विभाजक AD भी बिन्दु D से होकर जाता है।
Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×