MENU

Chapter 10 वृत्त (Circles ) Ex 10.5 Solutions

Question - 11 : - उभयनिष्ठ कर्ण AC वाले दो समकोण त्रिभुज ABC और ADC हैं। सिद्ध कीजिए कि ∠ CAD = ∠CBD है।

Answer - 11 : -

दिया है : ΔABC और ΔADC दो समकोण त्रिभुज हैं जिनका कर्ण AC उभयनिष्ठ है। रेखाखण्ड BD खींचा गया है।
सिद्ध करना है : ∠CAD = ∠ CBD
रचना : AC को व्यास मानकर वृत्त खींचा। उपपत्ति
ΔABC समकोण त्रिभुज है जिसका कर्ण AC है।
∠B = 90°
पुनः ΔADC समकोण त्रिभुज है जिसका कर्ण AC है।
∠ D = 90°
तब चतुर्भुज ABCD में, ∠B + ∠D = 180°
ABCD चक्रीय चतुर्भुज है। (सम्मुख कोणों का योग 180° है।)
बिन्दु A, B, C और D एक वृत्त पर हैं।
∠CAD और ∠CBD एक ही वृत्तखण्ड के कोण हैं;
अतः बराबर होंगे।
अतः ∠ CAD = ∠CBD

Question - 12 : - सिद्ध कीजिए कि चक्रीय समान्तर चतुर्भुज एक आयत होता है।

Answer - 12 : -

दिया है । समान्तर चतुर्भुज ABCD एक चक्रीय चतुर्भुज है।
सिद्ध करना है : चतुर्भुज ABCD एक आयत है।
उपपत्ति : ABCD एक चक्रीय चतुर्भुज है, इसके सम्मुख कोणों का योग 180° के बराबर होगा।
∠ A + ∠C = 180°
परन्तु समान्तर चतुर्भुज के सम्मुख कोण बराबर होते हैं।
∠A = ∠C
अत: समीकरण (1) से,
∠A = ∠C = 90° इसी प्रकार,
∠B = ∠D = 90°
ABCD का प्रत्येक अन्त:कोण 90° के बराबर है।
अत: ABCD एक आयत है।
Proved.

Free - Previous Years Question Papers
Any questions? Ask us!
×