Question -
Answer -
दिया है : O केन्द्र का एक वृत्त है जिसकी परिधि पर P, Q व R तीन बिन्दु हैं।
ज्ञात करना है : ∠OPR
गणना : दीर्घ चाप PR द्वारा वृत्त के केन्द्र पर बना कोण वृहत्कोण ∠POR है और इस चाप द्वारा शेष परिधि PQR के बिन्दु Q पर बना ∠PQR है।
∠PQR = x वृहत्कोण ∠POR
100° = वृहत्कोण ∠POR
वृहत्कोण ∠ POR = 200°
तब, शेष कोण POR = 360° – 200° = 160°
अब, ΔPOR में,
OR = OP (वृत्त की त्रिज्याएँ)
∠OPR = ∠ORP (समान भुजाओं के सम्मुख कोण)
पुन: ΔPOR में,
∠OPR + ∠ POR + ∠ORP = 180° (त्रिभुज के अन्त:कोणों को योग 180° होता है।)
∠OPR + 160° + ∠OPR = 180° (∠ORP = ∠OPR)
2 ∠OPR = 180° – 160° = 20°
∠OPR = 10°
अतः ∠OPR = 10°