Question -
Answer -
दिया है : O तथा O’ केन्द्र वाले दो वृत्त हैं जो परस्पर दो बिन्दुओं A तथा B पर प्रतिच्छेद करते हैं। AB वृत्तों की उभयनिष्ठ जीवा है और OO’ उनके केन्द्रों को मिलाने वाली रेखा है। AB और OO’ एक-दूसरे को बिन्दु P पर काटते हैं।
सिद्ध करना है : OO’, AB का लम्ब समद्विभाजक है।
रचना : वृत्तों की त्रिज्याएँ OA, OB, O’A व O’B खींचीं।
उपपत्ति: ∆OAO’ तथा ∆OBO’ में,
OA = OB (एक ही वृत्त की त्रिज्याएँ बराबर होती हैं।)
O’A= O’B (एक ही वृत्त की त्रिज्याएँ बराबर होती हैं।)
OO’ = OO’ (उभयनिष्ठ भुजा है)
Δ ΟΑΟ’ = Δ ΟΒΟ’ (S.S.S. से)
∆AOO’ = ∆BOO’ या
∠AOP = ∠ BOP (C.P.C.T.)
तब ∆AOP और ∆BOP में,
OA = OB (एक ही वृत्त की त्रिज्याएँ बराबर होती हैं।)
∠ AOP = ∠ BOP (ऊपर सिद्ध किया है।)
OP = OP (उभयनिष्ठ भुजा है)
∆AOP = ∆BOP
AP = BP और ∠OPA = ∠OPB
AP = BP;
अत: OO’ बिन्दु P पर AB को समद्विभाजित करता है। :
∠OPA = ∠OPB और APB एक रेखा (उभयनिष्ठ जीवा) है।
∠OPA + ∠OPB = 180°
हल करने पर, ∠OPA = 90° व ∠OPB = 90°
अतः OO” उभयनिष्ठ जीवा AB का लम्ब-समद्विभाजक है।