Question -
Answer -
Consider R1
Given R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}
Reflexivity:
Here, (1, 1), (2, 2), (3, 3) ∈R
So, R1 is reflexive.
Symmetry:
Here, (2, 1) ∈ R1,
But (1, 2) ∉ R1
So, R1 is not symmetric.
Transitivity:
Here, (2, 1) ∈R1 and (1, 3) ∈R1,
But (2, 3) ∉R1
So, R1 is not transitive.
Now consider R2
Given R2 = {(2, 2), (3, 1), (1, 3)}
Reflexivity:
Clearly, (1, 1) and (3, 3)∉R2
So, R2 is not reflexive.
Symmetry:
Here, (1, 3) ∈ R2 and (3, 1) ∈ R2
So, R2 is symmetric.
Transitivity:
Here, (1,3) ∈ R2 and (3,1) ∈ R2
But (3, 3) ∉R2
So, R2 is not transitive.
Consider R3
Given R3 = {(1, 3), (3, 3)}
Reflexivity:
Clearly, (1,1) ∉ R3
So, R3 is not reflexive.
Symmetry:
Here, (1, 3) ∈ R3, but (3, 1) ∉ R3
So, R3 is not symmetric.
Transitivity:
Here, (1, 3) ∈ R3 and (3, 3) ∈ R3
Also, (1, 3) ∈ R3
So, R3 is transitive.