MENU
Question -

Let A = {1, 2, 3}, and let R1 ={(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 ={(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Findwhether or not each of the relations R1, R2, R3 onA is (i) reflexive (ii) symmetric (iii) transitive.



Answer -

Consider R1

Given R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}

Reflexivity:

Here, (1, 1), (2, 2), (3, 3) 
R

So, R1 is reflexive.

Symmetry:

Here, (2, 1)  R1,

But (1, 2)  R1

So, R1 is not symmetric.

Transitivity:

Here, (2, 1) R1 and (1, 3) R1

But (2, 3) R1 

So, R1 is not transitive.

Now consider R2

Given R2 = {(2, 2), (3, 1), (1, 3)}

Reflexivity:

Clearly, (1, 1) and (3, 3)R2 

So, R2 is not reflexive.

Symmetry:

Here, (1, 3)  R2 and (3, 1)  R2

So, R2 is symmetric.

Transitivity:

Here, (1,3)  R2 and (3,1)  R

But (3, 3) R2

So, R2 is not transitive.

Consider R3

Given R3 = {(1, 3), (3, 3)}

Reflexivity:

Clearly, (1,1)  R3

So, R3 is not reflexive.

Symmetry:

Here, (1, 3)  R3, but (3, 1)  R3

So, R3 is not symmetric.

Transitivity:

Here, (1, 3)  R3 and (3, 3)  R3 

Also, (1, 3)  R3

So, R3 is transitive.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×