Question -
Answer -
Solution:
Let the positive integer = a
According to Euclid’s division lemma,
a = bm + r
According to the question, b = 5
a = 5m + r
So, r= 0, 1, 2, 3, 4
When r = 0, a = 5m.
When r = 1, a = 5m + 1.
When r = 2, a = 5m + 2.
When r = 3, a = 5m + 3.
When r = 4, a = 5m + 4.
Now,
When a = 5m
a2 = (5m)2 =25m2
a2 = 5(5m2) = 5q,where q = 5m2
When a = 5m + 1
a2 = (5m + 1)2 =25m2 + 10 m + 1
a2 = 5 (5m2 +2m) + 1 = 5q + 1, where q = 5m2 + 2m
When a = 5m + 2
a2 = (5m + 2)2
a2 = 25m2 +20m + 4
a2 = 5 (5m2 +4m) + 4
a2 = 5q + 4where q = 5m2 + 4m
When a = 5m + 3
a2 = (5m + 3)2 =25m2 + 30m + 9
a2 = 5 (5m2 +6m + 1) + 4
a2 = 5q + 4where q = 5m2 + 6m + 1
When a = 5m + 4
a2 = (5m + 4)2 =25m2 + 40m + 16
a2 = 5 (5m2 +8m + 3) + 1
a2 = 5q + 1where q = 5m2 + 8m + 3
Therefore, square of any positive integercannot be of the form 5q + 2 or 5q + 3.
Hence Proved.