MENU
Question 1 :

Evaluate the following:

(i) tan {2 tan-1 (1/5) – π/4}

(ii) Tan {1/2 sin-1 (3/4)}

(iii) Sin {1/2 cos-1 (4/5)}

(iv) Sin (2 tan -1 2/3) + cos (tan-1 √3)

Answer 1 :

(i) Given tan {2 tan-1 (1/5)– π/4}

(ii) Given tan {1/2sin-1 (3/4)}

(iii) Given sin {1/2cos-1 (4/5)}

(iv) Given Sin (2tan -1 2/3) + cos (tan-1 √3)

Question 2 :

Prove the following results:

(i) 2 sin-1 (3/5) = tan-1 (24/7)

(ii) tan-1 ¼ + tan-1 (2/9) = ½ cos-1 (3/5)= ½ sin-1 (4/5)

(iii) tan-1 (2/3) = ½ tan-1 (12/5)

(iv) tan-1 (1/7) + 2 tan-1 (1/3) = π/4

(v) sin-1 (4/5) + 2 tan-1 (1/3) = π/2

(vi) 2 sin-1 (3/5) – tan-1 (17/31) = π/4

(vii) 2 tan-1 (1/5) + tan-1 (1/8) = tan-1 (4/7)

(viii) 2 tan-1 (3/4) – tan-1 (17/31) =π/4

(ix) 2 tan-1 (1/2) + tan-1 (1/7) = tan-1 (31/17)

(x) 4 tan-1(1/5) – tan-1(1/239) = π/4

Answer 2 :

(i) Given 2 sin-1 (3/5)= tan-1 (24/7)

Hence, proved.

(ii) Given tan-1 ¼+ tan-1 (2/9) = ½ cos-1 (3/5) = ½ sin-1 (4/5)

Hence, proved.

(iii) Given tan-1 (2/3)= ½ tan-1 (12/5)

Hence, proved.

(iv) Given tan-1 (1/7)+ 2 tan-1 (1/3) = π/4

Hence, proved.

(v) Given sin-1 (4/5)+ 2 tan-1 (1/3) = π/2

(vi) Given 2 sin-1 (3/5)– tan-1 (17/31) = π/4

(vii) Given 2 tan-1 (1/5)+ tan-1 (1/8) = tan-1 (4/7)

Hence, proved.

(viii) Given 2 tan-1 (3/4)– tan-1 (17/31) = π/4

Hence, proved.

(ix) Given 2 tan-1 (1/2)+ tan-1 (1/7) = tan-1 (31/17)

Hence, proved.

(x) Given 4 tan-1(1/5)– tan-1(1/239) = π/4

Hence, proved.

Question 3 :

If sin-1 (2a/1 + a2) – cos-1(1 – b2/1+ b2) = tan-1(2x/1 – x2), then prove that x =(a – b)/ (1 + a b)

Answer 3 :

Given sin-1 (2a/1+ a2) – cos-1(1 – b2/1 + b2) = tan-1(2x/1– x2)

Hence, proved.

Question 4 :

Prove that:

(i) tan-1{(1 – x2)/ 2x)} + cot-1{(1 – x2)/2x)} = π/2

(ii) sin {tan-1 (1 – x2)/ 2x) + cos-1 (1– x2)/ (1 + x2)} = 1

Answer 4 :

(i) Given tan-1{(1– x2)/ 2x)} + cot-1{(1 – x2)/ 2x)} = π/2

Hence, proved.

(ii) Given sin {tan-1 (1– x2)/ 2x) + cos-1 (1 – x2)/ (1 + x2)}

Hence, proved.

Question 5 : If sin-1 (2a/ 1+ a2)+ sin-1 (2b/ 1+ b2) = 2 tan-1 x,prove that x = (a + b/ 1 – a b)

Answer 5 :

Given sin-1 (2a/1+ a2) + sin-1 (2b/ 1+ b2) = 2 tan-1 x

Hence, proved.

Question 6 :

Answer 6 :


Question 7 :

Answer 7 :


Question 8 :

Answer 8 :


Question 9 :

Answer 9 :


Question 10 :

Answer 10 :


 View All Questions and Answers of RD Chapter 4- Inverse Trigonometric Functions Ex-4.14 
Free - Previous Years Question Papers
Any questions? Ask us!
×