MENU
Question 1 :

Determine whether the following operation define a binary operation onthe given set or not:

(i) ‘*’ on N defined by a * b = ab for all a, b N.

(ii) ‘O’ on Z defined by a O b = ab for all a, b Z.

(iii)  ‘*’ on N defined by a * b = a + b – 2 for all a, b N

(iv) ‘×6‘ on S ={1, 2, 3, 4, 5} defined by a ×6 b= Remainder when a b is divided by 6.

(v) ‘+6’ on S = {0, 1, 2, 3, 4, 5} defined by a +6 b

(vi) ‘’ on N defined by a b= ab + ba for all a, b N

(vii) ‘*’ on Q defined by a * b = (a – 1)/ (b + 1) for all a, b Q

Answer 1 :

(i) Given ‘*’ on Ndefined by a * b = ab for all a, b N.

Let a, b  N. Then,

a N      [ ab≠0 and a,b is positive integer]

 a * b  N

Therefore,

a * b  N,  a, b  N

Thus, * is a binaryoperation on N.

(ii) Given ‘O’ on Zdefined by a O b = ab for all a, b Z.

Both a =3 and b = -1 belong to Z.

a * b = 3-1

= 1/3 Z

Thus, * is not abinary operation on Z.

(iii)  Given ‘*’on N defined by a * b = a + b – 2 for all a, b N

If a = 1and b = 1,

a * b = a + b – 2

= 1 + 1 – 2

= 0  N

Thus, there exist a =1 and b = 1 such that a * b  N

So, * is not a binaryoperation on N.

(iv) Given ‘×6‘ on S= {1, 2, 3, 4, 5} defined by a ×6 b= Remainder when a b is divided by 6.

Consider thecomposition table,

X6

1

2

3

4

5

1

1

2

3

4

5

2

2

4

0

2

4

3

3

0

3

0

3

4

4

2

0

4

2

5

5

4

3

2

1

Here all the elementsof the table are not in S.

For a =2 and b = 3,

a ×6 b= 2 ×6 3 = remainder when 6 divided by 6= 0 ≠ S

Thus, ×6 is not a binary operation on S.

(v) Given ‘+6’on S = {0, 1, 2, 3, 4, 5} defined by a +6 b

Consider thecomposition table,

+6

0

1

2

3

4

5

0

0

1

2

3

4

5

1

1

2

3

4

5

0

2

2

3

4

5

0

1

3

3

4

5

0

1

2

4

4

5

0

1

2

3

5

5

0

1

2

3

4

Here all the elementsof the table are not in S.

For a =2 and b = 3,

a ×6 b= 2 ×6 3 =remainder when 6 divided by 6 = 0 ≠ Thus, ×6 is not a binary operation on S.

(vi) Given ‘’ on N defined by a b= ab + ba forall a, b N

Let a, b N. Then,

ab, ba  N

ab +ba N      [Addition is binary operation on N]

a b N

Thus,  is a binary operation on N.

(vii) Given ‘*’ on Qdefined by a * b = (a – 1)/ (b + 1) for all a, b Q

If a = 2 and b = -1 inQ,

a * b = (a – 1)/ (b +1)

= (2 – 1)/ (- 1 + 1)

= 1/0 [which is notdefined]

For a = 2 and b = -1

a * b does not belongsto Q

So, * is not a binaryoperation in Q.

Question 2 :

Determine whether or not the definition of * given below gives a binaryoperation. In the event that * is not a binary operation give justification ofthis.
(i) On Z+, defined *by a * b = a – b

(ii) On Z+, define * by a*b = ab

(iii) On R, define * by a*b = ab2

(iv) On Z+ define * by a * b =|a − b|

(v) On Zdefine * by a * b = a

(vi) On R, define * by a * b = a + 4b2

Here, Z+ denotes the set of all non-negativeintegers.

Answer 2 :

(i) Given On Z+,defined * by a * b = a – b

If a = 1 and b = 2 inZ+, then

a * b = a – b

= 1 – 2

= -1 Z[because Z+ isthe set of non-negative integers]

For a = 1 and b = 2,

a * b Z+

Thus, * is not abinary operation on Z+.

(ii) Given Z+,define * by a*b = a b

Let a, b Z+

a, b Z+

a * b Z+

Thus, * is a binaryoperation on R.

(iii) Given on R,define by a*b = ab2

Let a, b R

a, b2  R

ab2  R

a * b R

Thus, * is a binaryoperation on R.

(iv) Given on Z+ define* by a * b = |a − b|

Let a, b Z+

| a – b | Z+

a * b Z+

Therefore,

a * b Z+, a, b Z+

Thus, * is a binaryoperation on Z+.

(v) Given on Zdefine* by a * b = a

Let a, b Z+

a Z+

a * b Z+

Therefore, a * b Z+  a, b Z+

Thus, * is a binaryoperation on Z+.

(vi) Given On R,define * by a * b = a + 4b2

Let a, b R

a, 4b2  R

a + 4b2  R

a * b R

Therefore, a *b R, a, b R

Thus, * is a binaryoperation on R.

Question 3 : Let * be a binary operation on the set I ofintegers, defined by a * b = 2a + b − 3.Find the value of 3 * 4.

Answer 3 :

Given a * b =2a + b – 3

3 * 4 = 2 (3) + 4 – 3

= 6 + 4 – 3

= 7

Question 4 :

Is * defined on the set {1, 2, 3, 4, 5} by a * b =LCM of a and b a binary operation? Justify your answer.

Answer 4 :

LCM

1

2

3

4

5

1

1

2

3

4

5

2

2

2

6

4

10

3

3

5

3

12

15

4

4

4

12

4

20

5

5

10

15

20

5

In the givencomposition table, all the elements are not in the set {1, 2, 3, 4, 5}.

If weconsider a = 2 and b = 3, a * b = LCMof a and b = 6  {1, 2, 3, 4, 5}.

Thus, * is not abinary operation on {1, 2, 3, 4, 5}.

Question 5 :

Let S = {a, b, c}. Find the total number of binaryoperations on S.

Answer 5 :

Number of binaryoperations on a set with n elements is nn2

Here, S ={a, b, c}

Number of elementsin S = 3

Number of binaryoperations on a set with 3 elements is 332

Question 6 :

Answer 6 :


Question 7 :

Answer 7 :


Question 8 :

Answer 8 :


Question 9 :

The binary operation& : R × R → R is defined as a * b = 2a + b.

Find (2*3)*4.

Answer 9 :


Question 10 :

Answer 10 :


 View All Questions and Answers of RD Chapter 3- Binary Operations Ex-3.1 
Free - Previous Years Question Papers
Any questions? Ask us!
×