RD Chapter 7 Trigonometric Ratios of Compound Angles Ex 7.1 Solutions
Question - 11 : - Provethat:
(i) (cos 11o +sin 11o) / (cos 11o – sin 11o) = tan 56o
(ii) (cos9o + sin 9o) / (cos 9o – sin 9o)= tan 54o
(iii)(cos 8o – sin 8o) / (cos 8o + sin 8o)= tan 37o
Answer - 11 : -
(i) (cos 11o + sin 11o) / (cos11o – sin 11o) = tan 56o
Let us consider LHS:
(cos 11o + sin 11o) / (cos11o – sin 11o)
Now let us divide the numerator and denominator by cos11o we get,
(cos 11o + sin 11o) / (cos11o – sin 11o) = (1 + tan 11o) / (1 – tan11o)
= (1 + tan 11o) / (1- 1×tan 11o)
= (tan 45o + tan 11o) / (1– tan 45o × tan 11o)
We know that tan (A+B) = (tan A + tan B) / (1 – tan Atan B)
So,
(tan 45o + tan 11o) / (1 –tan 45o × tan 11o) = tan (45o + 11o)
= tan 56o
= RHS
∴ LHS = RHS
Hence proved.
(ii) (cos 9o + sin 9o) / (cos 9o –sin 9o) = tan 54o
Let us consider LHS:
(cos 9o + sin 9o) / (cos 9o –sin 9o)
Now let us divide the numerator and denominator by cos9o we get,
(cos 9o + sin 9o) / (cos 9o –sin 9o) = (1 + tan 9o) / (1 – tan 9o)
= (1 + tan 9o) / (1 – 1 × tan 9o)
= (tan 45o + tan 9o) / (1 –tan 45o × tan 9o)
We know that tan (A+B) = (tan A + tan B) / (1 – tan Atan B)
So,
(tan 45o + tan 9o) / (1 –tan 45o × tan 9o) = tan (45o + 9o)
= tan 54o
= RHS
∴ LHS = RHS
Hence proved.
(iii) (cos 8o – sin 8o) / (cos 8o +sin 8o) = tan 37o
Let us consider LHS:
(cos 8o – sin 8o) / (cos 8o +sin 8o)
Now let us divide the numerator and denominator by cos8o we get,
(cos 8o – sin 8o) / (cos 8o +sin 8o) = (1 – tan 8o) / (1 + tan 8o)
= (1 – tan 8o) / (1 + 1×tan 8o)
= (tan 45o – tan 8o) / (1 +tan 45o ×tan 8o)
We know that tan (A+B) = (tan A + tan B) / (1 – tan Atan B)
So,
(tan 45o – tan 8o) / (1 +tan 45o ×tan 8o) = tan (45o – 8o)
= tan 37o
= RHS
∴ LHS = RHS
Hence proved.
Question - 12 : - Provethat:
(i)
(ii)
(iii)
Answer - 12 : -
(i)
= sin 90o
= 1
= RHS
∴ LHS = RHS
Hence proved.
(ii)
= sin 60o
= √3/2
= RHS
∴ LHS = RHS
Hence proved.
(iii)
= sin 90o
= 1
= RHS
∴ LHS = RHS
Hence proved.
Question - 13 : - Provethat: (tan 69o + tan 66o) / (1 – tan 69o tan66o) = -1
Answer - 13 : -
Let us consider LHS:
(tan 69o + tan 66o) / (1 –tan 69o tan 66o)
We know that, tan (A + B) = (tan A + tan B) / (1 – tanA tan B)
Here, A = 69o and B = 66o
So,
(tan 69o + tan 66o) / (1 –tan 69o tan 66o) = tan (69 + 66)o
= tan 135o
= – tan 45o
= – 1
= RHS
∴ LHS = RHS
Hence proved.
Question - 14 : - (i) Iftan A = 5/6 and tan B = 1/11, prove that A + B = π/4
(ii) Iftan A = m/(m–1) and tan B = 1/(2m – 1), then prove that A – B = π/4
Answer - 14 : -
(i) If tan A = 5/6 and tan B = 1/11, prove that A + B =π/4
Given:
tan A = 5/6 and tan B = 1/11
We know that, tan (A + B) = (tan A + tan B) / (1 – tanA tan B)
= [(5/6) + (1/11)] / [1 – (5/6) × (1/11)]
= (55+6) / (66-5)
= 61/61
= 1
= tan 45o or tan π/4
So, tan (A + B) = tan π/4
∴ (A + B) = π/4
Hence proved.
(ii) If tan A = m/(m–1) and tan B = 1/(2m – 1), thenprove that A – B = π/4
Given:
tan A = m/(m–1) and tan B = 1/(2m – 1)
We know that, tan (A – B) = (tan A – tan B) / (1 + tanA tan B)
= (2m2 – m – m + 1) / (2m2 –m – 2m + 1 + m)
= (2m2 – 2m + 1) / (2m2 –2m + 1)
= 1
= tan 45o or tan π/4
So, tan (A – B) = tan π/4
∴ (A – B) = π/4
Hence proved.
Question - 15 : - provethat:
(i) cos2 π/4– sin2 π/12 = √3/4
(ii) sin2 (n+ 1) A – sin2nA = sin (2n + 1) A sin A
Answer - 15 : -
(i) cos2 π/4 – sin2 π/12 =√3/4
Let us consider LHS:
cos2 π/4 – sin2 π/12
We know that, cos2A – sin2 B= cos (A + B) cos (A – B)
So,
cos2 π/4 – sin2 π/12 =cos (π/4 + π/12) cos (π/4 – π/12)
= cos 4π/12 cos 2π/12
= cos π/3 cos π/6
= 1/2 × √3/2
= √3/4
= RHS
∴ LHS = RHS
Hence proved.
(ii) sin2 (n + 1) A – sin2nA =sin (2n + 1) A sin A
Let us consider LHS:
sin2 (n + 1) A – sin2nA
We know that, sin2A – sin2 B= sin (A + B) sin (A – B)
Here, A = (n + 1) A and B = nA
So,
sin2 (n + 1) A – sin2n A =sin ((n + 1) A + nA) sin ((n + 1) A – nA)
= sin (nA +A + nA) sin (nA +A – nA)
= sin (2nA +A) sin (A)
= sin (2n + 1) A sin A
= RHS
∴ LHS = RHS
Hence proved.
Question - 16 : - Provethat:
(i)
(ii)
(iii)
(iv) sin2 B= sin2 A + sin2 (A-B) – 2sin A cos B sin (A –B)
(v) cos2 A+ cos2 B – 2 cos A cos B cos (A +B) = sin2 (A +B)
(vi)
Answer - 16 : -
(i)
= tan A
= RHS
∴ LHS = RHS
Hence proved.
(ii)
Let us consider LHS:
= tan A – tan B + tan B – tan C + tan C – tan A
= 0
= RHS
∴ LHS = RHS
Hence proved.
(iii)
= cotB – cotA + cot C – cotB + cotA – cot C
= 0
= RHS
∴ LHS = RHS
Hence proved.
(iv) sin2 B = sin2 A + sin2 (A-B)– 2sin A cos B sin (A – B)
Let us consider RHS:
sin2A + sin2 (A -B) – 2 sinA cos B sin (A – B)
sin2A + sin (A -B) [sin (A –B) – 2 sin Acos B]
We know that, sin (A –B) = sin A cos B – cos A sin B
So,
sin2A + sin (A -B) [sin A cos B – cos A sinB – 2 sin A cos B]
sin2A + sin (A -B) [-sin A cos B – cos Asin B]
sin2A – sin (A -B) [sin A cos B + cos A sinB]
We know that, sin (A +B) = sin A cos B + cos A sin B
So,
sin2A – sin (A – B) sin (A + B)
sin2 A – sin2 A + sin2 B
sin2 B
= LHS
∴ LHS = RHS
Hence proved.
(v) cos2 A + cos2 B – 2cos A cos B cos (A + B) = sin2 (A + B)
Let us consider LHS:
cos2A + cos2B – 2 cos A cos Bcos (A +B)
cos2A + 1 – sin2B – 2 cos A cosB cos (A +B)
1 + cos2A – sin2B – 2 cos Acos B cos (A +B)
We know that, cos2A – sin2B =cos (A +B) cos (A –B)
So,
1 + cos (A +B) cos (A –B) – 2 cos A cos B cos (A+B)
1 + cos (A +B) [cos (A –B) – 2 cos A cos B]
We know that, cos (A – B) = cos A cos B + sin A sin B.
So,
1 + cos (A +B) [cos A cos B + sin A sin B – 2 cosA cos B]
1 + cos (A +B) [-cos A cos B + sin A sin B]
1 – cos (A +B) [cos A cos B – sin A sin B]
We know that, cos (A +B) = cos A cos B – sin A sin B.
So,
1 – cos2 (A + B)
sin2 (A + B)
= RHS
∴ LHS = RHS
Hence proved.
(vi)
∴ LHS = RHS
Hence proved.
Question - 17 : - Provethat:
(i) tan 8x –tan 6x – tan 2x = tan 8x tan 6x tan 2x
(ii) tanπ/12 + tan π/6 + tan π/12 tan π/6 = 1
(iii) tan36o + tan 9o + tan 36o tan 9o = 1
(iv) tan13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x
Answer - 17 : -
(i) tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x
Let us consider LHS:
tan 8x – tan 6x – tan 2x
tan 8x = tan(6x + 2x)
We know that, tan (A + B) = (tan A + tan B) / (1 – tanA tan B)
So,
tan 8x = (tan 6x + tan 2x) / (1 – tan 6x tan 2x)
By cross-multiplying we get,
tan 8x (1 – tan 6x tan 2x) = tan 6x + tan 2x
tan 8x – tan 8x tan 6x tan2x = tan 6x + tan 2x
Upon rearranging we get,
tan 8x – tan 6x – tan 2x = tan 8x tan 6x tan 2x
= RHS
∴ LHS = RHS
Hence proved.
(ii) tan π/12 + tan π/6 + tan π/12 tan π/6 = 1
We know,
π/12 = 15° and π/6 = 30°
So, we have 15° + 30° = 45°
Tan (15° + 30°) = tan 45°
We know that, tan (A + B) = (tan A + tan B) / (1 – tanA tan B)
So,
(tan 15o + tan 30o) / (1 –tan 15o tan 30o) = 1
tan 15° + tan 30° = 1 – tan 15° tan 30°
Upon rearranging we get,
tan15° + tan30° + tan15° tan30° = 1
Hence proved.
(iii) tan 36o + tan 9o + tan36o tan 9o = 1
We know 36° + 9° = 45°
So we have,
tan (36° + 9°) = tan 45°
We know that, tan (A + B) = (tan A + tan B) / (1 – tanA tan B)
So,
(tan 36o + tan 9o) / (1 –tan 36o tan 9o) = 1
tan 36° + tan 9° = 1 – tan 36° tan 9°
Upon rearranging we get,
tan 36° + tan 9° + tan 36° tan 9° = 1
Hence proved.
(iv) tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x
Let us consider LHS:
tan 13x – tan 9x – tan 4x
tan 13x = tan (9x + 4x)
We know that, tan (A + B) = (tan A + tan B) / (1 – tanA tan B)
So,
tan 13x = (tan 9x + tan 4x) / (1 – tan 9x tan 4x)
By cross-multiplying we get,
tan 13x (1 – tan 9x tan 4x) = tan 9x + tan 4x
tan 13x – tan 13x tan 9x tan 4x = tan 9x + tan 4x
Upon rearranging we get,
tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x
= RHS
∴ LHS = RHS
Hence proved.